Skip to main content
Log in

Mössbauer study of oxo derivatives of iron in the Fe2O3-Na2O2 system

  • Published:
Inorganic Materials Aims and scope

Abstract

Various compositions of oxo derivatives of iron reacting with sodium peroxide have been studied by Mössbauer spectroscopy. We have examined several mathematical models of the measured spectra. The results obtained are inconsistent with hypotheses made previously that such conditions may lead to the formation of compounds of iron in oxidation states above (6+). We demonstrate that a large excess of an alkali peroxide leads, most likely, to the formation of at least two iron(V) derivatives in tetrahedral coordination. In their Mössbauer spectra, they have isomer shifts of −0.45 and −0.51 mm/s and unusually large quadrupole splittings: 1.32 and 1.94 mm/s (at room temperature).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riedel, S. and Kaupp, M., The highest oxidation states of the transition metal elements, Coord. Chem. Rev., 2009, vol. 253, p. 606.

    Article  CAS  Google Scholar 

  2. Wilke, M., Farges, F., Petit, P.-E., et al., Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study, Am. Mineral., 2001, vol. 86, p. 714.

    CAS  Google Scholar 

  3. Perfiliev, Yu.D., Benko, E.M., Pankratov, D.A., et al., Formation of iron(VI) in ozonolysis of iron(III) in alkaline solution, Inorg. Chim. Acta, 2007, vol. 360, p. 2789.

    Article  CAS  Google Scholar 

  4. Jeannot, C., Malaman, B., Gérardin, R., and Oulladiaf, B., Synthesis, crystal and magnetic structures of the sodium ferrate(IV) Na4FeO4 studied by neutron diffraction and Mössbauer techniques, J. Solid State Chem., 2002, vol. 165, no. 2, p. 266.

    Article  CAS  Google Scholar 

  5. Dedushenko, S.K., Perfiliev, Yu.D., Tcheboukov, D.E., et al., Moessbauer study of pentavalent iron in vanadium(V) oxide matrix, Mendeleev Commun., 1999, vol. 5, p. 211.

    Article  Google Scholar 

  6. Demazeau, G., Buffat, B., Menil, F., et al., Characterization of six-coordinated iron(V) in oxide lattice, Mater. Res. Bull., 1981, vol. 16, p. 1465.

    Article  CAS  Google Scholar 

  7. Gutsev, G.L., Khanna, S.N., Rao, B.K., and Jena, P., FeO4: A unique example of a closed-shell cluster mimicking a superhalogen, Phys. Rev. A, 1999, vol. 59, no. 5, p. 3681.

    Article  CAS  Google Scholar 

  8. Goralevich, D.K., Studies of higher group VIII oxygen compounds, Zh. Ros. Fiz.-Khim. O-va, Ser. Khim., 1926, vol. 58, no. 8, p. 1129.

    CAS  Google Scholar 

  9. Perfil’ev, Yu.D., Kopelev, N.S., Kiselev, Yu.M., and Spitsyn, V.I., Mössbauer study of octavalent iron, Dokl. Akad. Nauk SSSR, 1987, vol. 296, no. 6, p. 1406.

    Google Scholar 

  10. Dedushenko, S.K., Perfil’ev, Yu.D., and Kornilova, A.A., RF Patent 2 448 055.

  11. Dedushenko, S.K., Perfil’ev, Yu.D., Chuev, M.I., et al., Identification of iron oxidation states in the products of interaction of Na2O2 and Fe2O3 by Mössbauer absorption spectroscopy, Russ. J. Inorg. Chem., 2010, vol. 55, no. 6, p. 942.

    Article  CAS  Google Scholar 

  12. Afanas’ev, A.M. and Chuev, M.A., Discrete versions of Mössbauer spectra, Zh. Eksp. Teor. Fiz., 1995, vol. 107, no. 3, p. 989.

    Google Scholar 

  13. Cooper, G.D. and DeGraff, B.A., Photochemistry of ferrioxalate system, J. Phys. Chem., 1971, vol. 75, no. 19, p. 2897.

    Article  Google Scholar 

  14. Matsnev, M.E. and Rusakov, V.S., Spectrrelax: An application for Mössbauer spectra modeling and fitting, AIP Conf. Proc., 2012, vol. 1489, p. 178.

    Article  CAS  Google Scholar 

  15. Kopelev, N.S., Kiselev, Yu.M., and Perfiliev, Yu.D., Mossbauer spectroscopy of the oxocomplexes iron in higher oxidation states, J. Radioanal. Nucl. Chem., 1992, vol. 157, p. 401.

    Article  CAS  Google Scholar 

  16. Menil, F., Systematic trends of the 57Fe Mossbauer isomer shifts in (FeOn) and (FeFn) polyhedra. Evidence of a new correlation between the isomer shift and the inductive effect of the competing bond T-X (→Fe) (where X is o or F and T any element with a formal positive charge), J. Phys. Chem. Solids, 1985, vol. 46, p. 763.

    Article  CAS  Google Scholar 

  17. Takeda, Y., Kanno, K., Takada, T., et al., Phase relation in the oxygen nonstoichiometric system, SrFeOx(2.5 ≤ x ≤3.0), J. Solid State Chem., 1986, vol. 63, p. 237

    Article  CAS  Google Scholar 

  18. Walker, L.R., Wertheim, G.K., and Jaccarino, V., Interpretation of the Fe57 isomer shift, Phys. Rev. Lett., 1961, vol. 6, no. 3, p. 98.

    Article  CAS  Google Scholar 

  19. Neese, F., Prediction and interpretation of the 57Fe isomer shift in Mossbauer spectra by density functional theory, Inorg. Chim. Acta, 2002, vol. 337, p. 181.

    Article  Google Scholar 

  20. Filatov, M., First principles calculation of Mossbauer isomer shift, Coord. Chem. Rev., 2009, vol. 253, p. 594.

    Article  CAS  Google Scholar 

  21. Shinjo, T., Ichida, T., and Takada, T., Fe57 Mossbauer effect and magnetic susceptibility of hexavalent iron compounds; K2FeO4, SrFeO4 and BaFeO4, J. Phys. Soc. Jpn., 1970, vol. 29, no. 1, p. 111.

    Article  CAS  Google Scholar 

  22. Wallace, T. and Fleck, A., Some properties of fused sodium hydroxide, J. Chem. Soc., 1921, vol. 119, p. 1839.

    Article  CAS  Google Scholar 

  23. Gutsev, G.L., Weatherford, C.A., Pradhan, K., et al., Structure and spectroscopic properties of iron oxides with the high content of oxygen: FeOn and (n = 5–12), J. Phys. Chem. A, 2010, vol. 114, no. 34, p. 9014.

    Article  CAS  Google Scholar 

  24. Tran, V.T. and Hendrickx, M.F.A., Description of the geometric and electronic structures responsible for the photoelectron spectrum of FeO 4 , J. Chem. Phys., 2011, vol. 135, paper 094 505.

  25. Atanasov, M., Theoretical studies on the higher oxidation states of iron, Inorg. Chem., 1999, vol. 38, p. 4942.

    Article  CAS  Google Scholar 

  26. Pankratov, D.A., Komozin, P.N., and Kiselev, Yu.M., EPR spectroscopy of transformations of iridium(III) and iridium(IV) hydroxo complexes in alkaline media, Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, p. 1794.

    Article  CAS  Google Scholar 

  27. Pankratov, D.A., Dement’ev, A.I., and Kiselev, Yu.M., Ab initio calculations of hydroxoplatinum compounds: II. Binuclear platinum(IV) superoxo complexes, Russ. J. Inorg. Chem., 2008, vol. 53, no. 2, p. 247.

    Google Scholar 

  28. Ippolitov, E.G., Tripol’skaya, T.A., Prikhodchenko, P.V., and Pankratov, D.A., Potassium hexahydroperoxostannate: Synthesis and structure, Russ. J. Inorg. Chem., 2001, vol. 46, no. 6, p. 851.

    Google Scholar 

  29. Pankratov, D.A., Prikhodchenko, P.V., Perfil’ev, Yu.D., et al., Mössbauer spectroscopy of alkali hydroperoxostannates, Izv. Ross. Akad. Nauk, Ser. Fiz., 2001, vol. 65, no. 7, p. 1043.

    CAS  Google Scholar 

  30. Josephson, B.D., Temperature-dependent shift of Γ-rays emitted by a solid, Phys. Rev. Lett., 1960, vol. 4, p. 341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pankratov.

Additional information

Original Russian Text © D.A. Pankratov, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 1, pp. 90–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pankratov, D.A. Mössbauer study of oxo derivatives of iron in the Fe2O3-Na2O2 system. Inorg Mater 50, 82–89 (2014). https://doi.org/10.1134/S0020168514010154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514010154

Keywords

Navigation