Skip to main content
Log in

Control of interfacial interaction during detonation spraying of Ti3SiC2-Cu composites

  • Published:
Inorganic Materials Aims and scope

Abstract

Changes in the phase composition of the 20 vol % Ti3SiC2-Cu composite during detonation spraying as well as corresponding microstructure formation processes in the sprayed coatings have been studied. It was demonstrated that when the amount of the explosive acetylene+oxygen mixture is kept constant (under the constant filled volume fraction of the barrel of the detonation gun of a CCDS2000 facility), the phase composition of the coating depends on the composition of the explosive mixture. The Ti3SiC2-Cu system is prone to interfacial interaction; therefore, in order to produce a dense coating preserving the phase composition, oxygen-depleted explosive mixtures should be used and small filled fractions of the barrel. As the temperature of the sprayed particles increases with increasing oxygen content in the explosive mixture, titanium silicon carbide reacts with copper, which results in the formation of the titanium carbide phase and dissolution of the de-intercalated silicon in the copper matrix leading to the formation of TiC x -Cu〈Si〉 coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulianitsky, V., Shtertser, V., Zlobin, Z., and Smurov, I., Computer-controlled detonation spraying: From process fundamentals toward advanced applications, J. Thermal Spray Technol., 2011, vol 20, no. 4, p. 791.

    Article  Google Scholar 

  2. Dudina, D.V., Zlobin, S.B., Bulina, N.V., et al., Detonation spraying of TiO2-2.5 vol. % Ag powders in a reducing atmosphere, J. Eur. Ceram. Soc., 2012, vol. 32, no. 4, p. 815.

    Article  CAS  Google Scholar 

  3. Dudina, D.V., Korchagin, M.A., Zlobin, S.B., et al., Compositional variations in the coatings formed by detonation spraying of Ti3Al at different O2/C2H2 ratios, Intermetallics, 2012, vol. 29, p. 140.

    Article  CAS  Google Scholar 

  4. Dudina, D.V., Zlobin, S.B., Ulianitsky, V.Yu., et al., Detonation spraying of TiO2-Ag: Controlling the phase composition and microstructure of the coatings, Ceram. Trans., 2012, vol. 237, p. 161.

    CAS  Google Scholar 

  5. Barsoum, M.W., The MN + 1AXN phases: A new class of solids; thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, nos. 1–4, p. 201.

    Article  CAS  Google Scholar 

  6. Zhou, Y. and Gu, W., Chemical reaction and stability of Ti3SiC2 in Cu during high-temperature processing of Cu/Ti3SiC2 composites, Z. Metallkd., 2004, vol. 95, no. 1, p. 50.

    Article  CAS  Google Scholar 

  7. Wu, J.Y., Zhou, W.C., and Wang, J.Y., Tribological behavior of Ti2SnC particulate reinforced copper matrix composites, Mater. Sci. Eng., A, 2006, vol. 422, nos. 1–2, p. 266.

    Article  Google Scholar 

  8. Peng, L., Fabricatikon and properties of Ti3AlC2 particulated reinfirced copper composites, Scr. Mater., 2007, vol. 56, no. 9, p. 729.

    Article  CAS  Google Scholar 

  9. Zhang, J. and Zhou, Y.C., Microstructure, mechanical and electrical properties of Cu-Ti3AlC2 and in situ TiCx composites, J. Mater. Res., 2008, vol. 23, no. 4, p. 924.

    Article  CAS  Google Scholar 

  10. Ngai, T.L., Zheng, W., and Li, Y., Effect of sintering temperature on the preparation of Cu-Ti3SiC2 metal matrix composites, Prog. Nat. Sci.: Mater. Int., 2013, vol. 23, no. 1, p. 70.

    Article  Google Scholar 

  11. Sonestedt, M., Frodelius, J., Palmquist, J.-P., et al., Microstructure of high velocity oxy-fuel sprayed Ti2AlC coatings, J. Mater. Sci., 2010, vol. 45, no. 10, p. 2760.

    Article  CAS  Google Scholar 

  12. Eklund, P., Bekers, M., Jansson, U., The M n + 1AXn phases: Materials science and thin-film processing, Thin Solid Films, 2010, vol. 518, no. 8, p. 1851.

    Article  CAS  Google Scholar 

  13. Smithells Metals Reference Book, Brandes, E.A. and Brook, G.B., Eds., Reed Educational and Professional Publishing, 1992, 7th ed.

    Google Scholar 

  14. Lomovsky, O.L., Dudina, D.V., Ulianitsky, V.Yu., Cold and detonation spraying of TiB2-Cu nanocomposites, Mater. Sci. Forum, 2007, vols. 534–536, p. 1373.

    Article  Google Scholar 

  15. Barsoum, M.W., El-Raghy, T., Rawn, C.J., Thermal properties of Ti3SiC2, J. Phys. Chem. Solids, 1999, vol. 60, no. 4, p. 429.

    Article  CAS  Google Scholar 

  16. Dudina, D.V., Mali, V.I., Anisimov, A.G., et al., Ti3SiC2-Cu composites by mechanical milling and spark plasma sintering: Possible microstructure formation scenarios, Met. Mater. Int., 2013 (in press).

    Google Scholar 

  17. Kim, J.-S., Kwon, Y.-S., Dudina, D.V., Nanocomposites TiB2-Cu: Consolidation and erosion behavior, J. Mater. Sci., 2005, vol. 40, no. 13, p. 3491.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Dudina.

Additional information

Original Russian Text © D.V. Dudina, I.S. Batraev, V.Yu. Ulianitsky, M.A. Korchagin, G.V. Golubkova, S.Yu. Abramov, O.I. Lomovsky, 2014, published in Neorganicheskie Materialy, 2014, Vol. 50, No. 1, pp. 41–45.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudina, D.V., Batraev, I.S., Ulianitsky, V.Y. et al. Control of interfacial interaction during detonation spraying of Ti3SiC2-Cu composites. Inorg Mater 50, 35–39 (2014). https://doi.org/10.1134/S0020168514010038

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168514010038

Keywords

Navigation