Skip to main content
Log in

Key issues in the targeted synthesis of inorganic substances

  • Published:
Inorganic Materials Aims and scope

Abstract

Chemistry is a science concerned with conversion of substances. From the chemical point of view, a substance is an assemblage of interacting particles, which is characterized by four properties: composition, structure, type of chemical bonding, and particle size. A conversion of a substance is a change in one or several of its properties. Targeted synthesis is a way of controlling a conversion of a substance. This paper considers thermodynamic and kinetic issues in targeted synthesis that are associated with control over the composition, structure, characteristic features of chemical bonding, and particle size and, hence, with the identification of conditions for the preparation of a substance with tailored properties. The concept of pure substance is discussed, which is an important issue for materials research and inorganic chemistry. It is pointed out that the composition of compounds should be characterized not only by their stoichiometry and impurity concentration but also by the related concentrations of native defects and impurities. In connection with this, a defect classification is presented and defect formation processes and techniques for controlling the defect composition are analyzed. Statistical criteria for assessing the compositional homogeneity of a pure substance are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Devyatykh, G.G. and Elliev, Yu.E., Vvedenie v teoriyu glubokoi ochistki veshchestv (Introduction to the Theory of Ultrapurification of Substances), Moscow: Nauka, 1981.

    Google Scholar 

  2. Novoselova, A.V., Fazovye diagrammy, ikh postroenie i metody issledovaniya (Phase Diagrams: Construction and Investigation), Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  3. Ormont, B.F., Vvedenie v fizicheskuyu khimiyu i kristallokhimiyu poluprovodnikov (Introduction to the Physical Chemistry and Crystal Chemistry of Semiconductors), Moscow: Vysshaya Shkola, 1968.

    Google Scholar 

  4. Medvedev, S.A., Vvedenie v tekhnologiyu poluprovodnikovykh materialov (Introduction to the Technology of Semiconductor Materials), Moscow: Vysshaya Shkola, 1970.

    Google Scholar 

  5. Fistul’, V.I., Fizika i khimiya tverdogo tela (Solid-State Physics and Chemistry), Moscow: Metallurgiya, 1995.

    Google Scholar 

  6. Gibbs, J.W., Elementary principles in statistical mechanics, developed with especial reference to the rational foundation of thermodynamics, in The Collected Works of J. Willard Gibbs, New York: Dover, 1961.

    Google Scholar 

  7. Voronin, G.F., Osnovy termodinamiki (Fundamentals of Thermodynamics), Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  8. Fuks, G.I., The smallest piece and the shortest life, Khim. Zhizn’, 1984, no. 2, p. 74.

    Google Scholar 

  9. Roldugin, V.I., Fizikokhimiya poverkhnosti (Physical Chemistry of Surfaces), Dolgoprudnyi: Intellekt, 2008.

    Google Scholar 

  10. Tret’yakov, Yu.D., Lukashin, A.V., and Eliseev, A.A., Synthesis of functional nanocomposites based on solidstate nanoreactors, Usp. Khim., 2004, vol. 73, no. 9, pp. 874–998.

    Google Scholar 

  11. Vasiliev, Ya., Akhmetshin, R., and Borodlev, Yu., Nucl. Instrum. Methods Phys. Res., Sect A, 1996, vol. 379, p. 533.

    Article  CAS  Google Scholar 

  12. Golyshev, V., Gonic, M., et al., Heat transfer in growing Bi4Ge3O12 crystals under weak convection: I—Thermophysical properties of bismuth germanate in solid and liquid state, J. Cryst. Growth, 2004, vol. 262, p. 202.

    Article  CAS  Google Scholar 

  13. Chernov, A.A., Givargizov, E.I., Bagdasarov, Kh.S., et al., Obrazovanie kristallov (Crystal Formation), vol. 3 of Sovremennaya kristallografiya (Modern Crystallography), Vainshtein, B.K., Chernov, A.A., and Shuvalov, L.A., Eds., Moscow: Nauka, 1980.

  14. Lawson, W.D. and Nielsen, S., Preparation of Single Crystals, London: Butterworths, 1958. Translated under the title Vyrashchivanie monokristallov, in Protsessy rosta i vyrashchivanie monokristallov (Growth Processes and Preparation of Single Crystals), Moscow: Inostrannaya Literatura, 1963, pp. 13–302.

    Google Scholar 

  15. Kröger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: North-Holland, 1964. Translated under the title Khimiya nesovershennykh kristallov, Moscow: Mir, 1969, p. 654.

    Google Scholar 

  16. Rosenberger, F., Fundamentals of Crystal Growth I: Macroscopic Equilibrium and Transport Concepts, Berlin: Springer, 1979.

    Book  Google Scholar 

  17. Gottshtain, G., The Physicochemical Grounds of Material Science, Moscow: Binom, 2009, p. 400.

    Google Scholar 

  18. Zlomanov, V.P. and Novoselova, A.V., P-T-x diagrammy sostoyaniya sistem metall-khal’kogen (P-T-x Phase Diagrams of Metal-Chalcogen Systems), Moscow: Nauka, 1987.

    Google Scholar 

  19. Storonkin, A.V., Termodinamika geterogennykh sistem (Thermodynamics of Heterogeneous Systems), Leningrad: Leningrad. Gos. Univ., 1967, part 1.

    Google Scholar 

  20. Van Bueren, H.G., Imperfections in Crystals, New York: Interscience, 1961. Translated under the title Defekty v kristallakh, Moscow: Inostrannaya Literatura, 1962, p. 302.

    Google Scholar 

  21. Stalova, M., Semicond. Semimetals, 1998, vol. 51A, p. 47.

    Google Scholar 

  22. Handbook of Semiconductor Technology, Jackson, K.A. and Schröger, W., Eds., Weinheim: Wiley-VCH, 2000, vol. 1. Translated under the title Entsiklopediya tekhnologii poluprovodnikovykh materialov, Moscow: ANO Izdatel’stvo Vodolei, 2003, vol. 1, p. 967.

    Google Scholar 

  23. West, A.R., Solid State Chemistry and Its Applications, Chichester: Wiley, 1985. Translated under the title Khimiya tverdogo tela, teoriya i prilozheniya, Moscow: Mir, 1988, part 1, p. 434.

    Google Scholar 

  24. Gusev, A.V., Gavva, V.A., Kozyrev, E.A., Potapov, A.M., and Plotnichenko, V.G., Preparation of single-crystal 29Si, Inorg. Mater., 2011, vol. 47, no. 7, pp. 691–693.

    Article  CAS  Google Scholar 

  25. Devyatykh, G.G. and Churbanov, V.F., Metody polucheniya veshchestv osoboi chistoty (Methods of Producing Extrapure-Grade Substances), Moscow: Znanie, 1976.

    Google Scholar 

  26. Triboulet, R. and Siffer, P., CdTe and Related Compounds: Physics, Defects, Hetero- and Nano-structures, Crystal Growth, Surface and Applications, Amsterdam: Elsevier, 2010.

    Google Scholar 

  27. Zlomanov, V.P., Crystal growth of nonstoichiometric compounds, Inorg. Mater., 2006, vol. 42, suppl. 1, pp. 19–48.

    Article  Google Scholar 

  28. Zlomanov, V.P., Nonstoichiometry and reactivity of inorganic compounds, Russ. J. Inorg. Chem., 2000, vol. 45,suppl. 3, pp. 292–311.

    Google Scholar 

  29. Fochuk, P., Korovyanenko, O., and Panchuk, O., High-temperature point defect equilibrium in CdTe modelling, J. Cryst. Growth, 1999, vol. 97, no. 3, p. 603.

    Article  Google Scholar 

  30. Kukk, P.L. and Altosaar, M., Defect structure of Cl and Cu doped CdS heat-treated in Cd and S2 vapor, J. Solid State Chem., 1983, vol. 98, no. 1, p. 1.

    Google Scholar 

  31. Nishizava, J. and Oyama, Y., Stoichiometry of III-V compounds, Mater. Sci. Eng., 1994, vol. 12, nos. 6–8, pp. 273–426.

    Google Scholar 

  32. Nishizava, J., Abstracts of papers, 1st Int. Symp. on Point Defect and Nonstoichiometry, Sendai, 2003, p. 1.

    Google Scholar 

  33. Neubert, M. and Rudolph, P., Growth of semi-insulating GaAs crystals in low temperature gradients by using the vapour pressure controlled Czochralski method (VCz), Prog. Cryst. Growth Character. Mater., 2001, vol. 43, p. 119.

    Article  CAS  Google Scholar 

  34. Zlomanov, V.P. and Yashina, L.V., Lead Chalcogenides: Physics and Applications, 2002, p. 37.

    Google Scholar 

  35. Brebrick, R.F. and Gubner, E., PbSe composition stability limits, J. Chem. Phys., 1962, no. 36, p. 170.

    Google Scholar 

  36. Van Lierder, W. and de Jonghe, L., The controlled oxidation of single crystals of UO2 to U4O9, Solid State Commun., 1964, vol. 2, p. 129.

    Article  Google Scholar 

  37. Van Gool, W., Principles of Defects Chemistry of Crystalline Solids, New York: Academic, 1966, p. 327.

    Google Scholar 

  38. Van Gool, W., Preparation of ZnS and CdS phosphors influenced by oxygen, Philips Res. Rep., Suppl., 1961, no. 3, p. 361.

    Google Scholar 

  39. Prior, A.C., Growth from the vapor of large single crystals of lead selenide of controlled composition, J. Electrochem. Soc., 1961, vol. 108, p. 82.

    Article  CAS  Google Scholar 

  40. Goldgirsh, A., Shusterman, S., Zilber, R., and Azouloy, M., Programme and Abstracts of Symp.: Solid Solutions of the II-VI Compounds, Zakopane, 2002, p. 20.

    Google Scholar 

  41. Osvenskii, V.B., in Fundamental’nye problemy rossiiskoi metallurgii na poroge XXI veka (Fundamental Problems of Russian Metallurgy on the Eve of the 21st Century), Moscow: RAEN, 1998, vol. 4, p. 85.

    Google Scholar 

  42. Zlomanov, V.P., Demin, V.N., and Gas’kov, A.M., Predominant defects in semiconductor isovalent solid solutions: Pb1 − y (SexTe1 − x )y, Pb1 − y (SxTe1 − x )y, and Pb1 − y (SxSe1 − x )y, J. Mater. Chem., 1992, vol. 2, no. 1, p. 31.

    Article  CAS  Google Scholar 

  43. Zavrazhnov, A.Yu., Turchen, D.N., Naumov, A.V., and Zlomanov, V.P., Transport reactions as a new variant of the phase composition control, J. Phase Equilib., 2003, vol. 24, no. 4, p. 330.

    Article  CAS  Google Scholar 

  44. Zavrazhnov, A.Yu., Zarzyn, I.D., Turchen, D.N., Naumov, A.V., and Zlomanov, V.P., Chemical vapor transport as a means of controlling the composition of condensed phases, Inorg. Mater., 2004, vol. 40,suppl. 2, pp. 101–127.

    Article  Google Scholar 

  45. Wagner, J.B. and Wagner, C., Investigations on cuprous sulfide, J. Chem. Phys., 1957, vol. 26, p. 1602.

    Article  CAS  Google Scholar 

  46. Miyatani, S., Galvano- and thermomagnetic effects in α-Ag2Te, J. Phys. Soc. Jpn., 1959, vol. 14, p. 750.

    Article  CAS  Google Scholar 

  47. Mathieu, H.J. and Rickert, H., Elektrochemisch-thermodynamische Untersuchungen am System Kupfer-Schwefel bei Temperaturen T = 15–90 Deg., Z. Phys. Chem. (Frankfurt), 1972, vol. 79, p. 315.

    Article  CAS  Google Scholar 

  48. Leushina, A.P. and Simonova, M.V., Homogeneity range and defect structure of lead sulfide at 310° as determined using emf measurements, Zh Fiz. Khim., 1975, vol. 49, p. 1218.

    Google Scholar 

  49. Leushina, A.P., Kolesnikov, L.A., Makhanova, E.V., and Zlomanov, V.P., Trudy 7-ogo Soveshchaniya “Fundamental’nye problemy ioniki tverdogo tela” (Proc. 7th Conf. Fundamental Issues in Solid-State Ionics), Chernogolovka, 2004, p. 30.

    Google Scholar 

  50. Alcock, C.B., Zador, S., and Steele, B.C.H., A thermodynamic study of dilute solutions of defects in the rutile structure TiO2 − x , NbO2 − x , and Ti0.5Nb0.5O2 ± x , Proc. Br. Ceram. Soc., 1967, vol. 8, p. 231.

    CAS  Google Scholar 

  51. Schmalzried, H. and Tretyakov, Yu.D., Irregularity in ferrite, Ber. Bunsen-Ges. Phys. Chem., 1966, vol. 72, p. 180.

    Google Scholar 

  52. Wijn, H.P., A new method of melting ferromagnetic semiconductors. BaFe18O27, a new kind of ferromagnetic crystal with high crystal anisotropy, Nature (London), 1957, vol. 170, p. 707.

    Article  Google Scholar 

  53. Osipov, A.V. and Kukushkin, S.A., A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles, J. Appl. Phys., 2013, vol. 113, paper 024 909.

  54. Belov, N.V., Struktura ionnykh i kovalentnykh kristallov (Structure of Ionic and Covalent Crystals), 1947.

    Google Scholar 

  55. Urusov, V.S., Teoreticheskaya kristallokhimiya (Theoretical Crystal Chemistry), Moscow: Mosk. Gos. Univ., 1987.

    Google Scholar 

  56. Wells, A., Structural Inorganic Chemistry, Oxford: Clarendon, 1984.

    Google Scholar 

  57. Antipov, E.V. and Abakumov, A.M., Structural design of copper-oxide-based superconductors, Usp. Fiz. Nauk, 2008, vol. 178, no. 2, pp. 190–202.

    Article  Google Scholar 

  58. Charkin, D.O., Modul approach as applied to the description, prediction and target synthesis of bismuth oxohalides with layered structures, Russ. J. Inorg. Chem., 2008, vol. 53, no. 13, pp. 1977–1996.

    Article  Google Scholar 

  59. Ginzburg, V.L., Concerning surface conduction, Zh. Eksp. Teor. Fiz., 1964, vol. 47, p. 2318.

    Google Scholar 

  60. Suzdalev, I.P., Nanotekhnologiya: fizikokhimiya klasterov, nanostruktur i nanomaternalov (Nanotechnology: Physical Chemistry of Clusters, Nanostructures, and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  61. Murray, C.B., Norris, D.J., and Bawendi, M.G., Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites, J. Am. Chem. Soc., 1993, vol. 115, pp. 8706–8709.

    Article  CAS  Google Scholar 

  62. Manna, L., Milliron, D.J., Meisel, A., Scher, E.C., and Alivisatos, A.P., Controlled growth of tetrapodbranched inorganic nanocrystals, Nat. Mater., 2003, vol. 2, pp. 382–385.

    Article  CAS  Google Scholar 

  63. Vasiliev, R.B., Dirin, D., and Gas’kov, A.M., Temperature effect on the growth of colloidal CdTe nanotetrapods, Mendeleev Commun., 2009, vol. 19, pp. 126–127.

    Article  CAS  Google Scholar 

  64. Nanotekhnologii. Azbuka dlya vsekh (Nanotechnologies: The ABC for Everyone), Tret’yakov, Yu.D., Ed., Moscow: Fizmatlit, 2008.

    Google Scholar 

  65. Nikitina, V.G., Orlov, A.G., and Romanenko, V.N., Problema neodnorodnosti raspredeleniya atomov i defektov pri issledovanii sovershenstva poluprovodnikovykh kristallov (Problem of inhomogeneous atom and defect distributions in studies of the perfection of semiconductor crystals), in Protsessy rosta poluprovodnikovykh kristallov i plenok (Growth of Semiconductor Crystals and Films), Novosibirsk: Nauka, 1981, vol. 6, p. 204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Zlomanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zlomanov, V.P. Key issues in the targeted synthesis of inorganic substances. Inorg Mater 49, 1233–1248 (2013). https://doi.org/10.1134/S0020168513130013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168513130013

Keywords

Navigation