Skip to main content
Log in

Synthesis and characterization of fluoride xerogels

  • Published:
Inorganic Materials Aims and scope

Abstract

Using coprecipitation from aqueous solutions, we have synthesized transparent fluoride xerogels with both hexagonal (NdF3, PrF3, and CeF3; tysonite structure) and cubic (Sr0.6Y0.4F2.4, Ba4Y3F17:Bi, and Ba4Y3F17:Yb; fluorite structure) symmetries. As shown by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy, the transparent xerogels have a hierarchical structural organization: primary nanoparticles 20–30 nm in size form agglomerates about 100 nm in size, which in turn form a “skeleton” with many voids and channels up to hundreds of nanometers in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedorov, P.P., Luginina, A.A., Kuznetsov, S.V., and Osiko, V.V., Nanofluorides, J. Fluorine Chem., 2011, vol. 132, no. 17, pp. 1012–1039.

    Article  CAS  Google Scholar 

  2. Kuznetsov, S.V., Osiko, V.V., Tkatchenko, E.A., and Fedorov, P.P., Inorganic nanofluorides and related nanocomposites, Russian Chem. Rev., 2006, vol. 75, no. 12, pp. 1065–1082.

    Article  CAS  Google Scholar 

  3. Functionalized Inorganic Fluorides: Synthesis, Characterization and Properties of Nanostructured Solids, Tressaud, A., Ed., New York: Wiley-VCH, 2010.

    Google Scholar 

  4. Optical Properties of Photonic Structures: Interplay of Order and Disorder, Limonov, M.F. and De La Rue, R.M., Eds., Boca Raton: CRC, 2012.

    Google Scholar 

  5. Wiersma, D., The smallest random laser, Nature, 2000, vol. 406, pp. 132–133.

    Article  CAS  Google Scholar 

  6. García, P.D., Sapienza, R., and Lo-pez, C., Photonic glasses: A step beyond white paint, Adv. Mater., 2010, vol. 22, pp. 12–19.

    Article  Google Scholar 

  7. Barthelemy, P., Bertolotti, J., and Wiersma, D.S., A Le-vy flight for light, Nature, 2008, vol. 453, pp. 495–498.

    Article  CAS  Google Scholar 

  8. Kuznetsov, S.V., Fedorov, P.P., Voronov, V.V., et al., Synthesis of Ba4R3F17 (R stands for rare-earth elements) powders and transparent compacts on their base, Russ. J. Inorg. Chem., 2010, vol. 55, no. 4, pp. 484–493.

    Article  CAS  Google Scholar 

  9. Kuznetsov, S.V., Fedorov, P.P., Voronov, V.V., and Osiko, V.V., Synthesis of MgAl2O4 nanopowders, Inorg. Mater., 2011, vol. 47, no. 8, pp. 895–898.

    Article  CAS  Google Scholar 

  10. Kuznetsov, S.V., Yarotskaya, I.V., Fedorov, P.P., et al., Preparation of nanopowdered M1 −x RxF2 + x (M = Ca, Sr, Ba; R = Ce, Nd, Er, Yb) solid solutions, Russ. J. Inorg. Chim., 2007, vol. 52, no. 3, pp. 315–320.

    Article  Google Scholar 

  11. Fedorov, P.P., Kuznetsov, S.V., Mayakova, M.N., et al., Coprecipitation from aqueous solutions to prepare binary fluorides, Russ. J. Inorg. Chem., 2011, vol. 56, no. 10, pp. 1525–1531.

    Article  CAS  Google Scholar 

  12. Fedorov, P.P., Mayakova, M.N. Kuznetsov, S.V., et al., Co-precipitation of yttrium and barium fluorides from aqueous solutions, Mater. Res. Bull., 2012, vol. 47, pp. 1794–1799.

    Article  CAS  Google Scholar 

  13. Gangulee, A., Separation of the doublet in X-ray diffraction profiles, J. Appl. Crystallogr., 1970, vol. 3, pp. 272–277.

    Article  CAS  Google Scholar 

  14. Liberman, B.D., Panovko, V.M., and Shelest, A.E., Taking into account doublet broadening of X-rays in structure analysis of crystals, Zavod. Lab., 1980, vol. 46, no. 2, pp. 141–142.

    Google Scholar 

  15. Stokes, A.R., A numerical Fourier-analysis method for the correction of widths and shapes of lines on X-ray powder photographs, Proc. Phys. Soc., 1948, vol. 61, p. 382.

    Article  CAS  Google Scholar 

  16. Stokes, A.R., Pascoe, K.J., and Lipson, H., X-ray evidence of the nature of cold work in metals, Nature, 1943, vol. 151, p. 137.

    Article  Google Scholar 

  17. Langford, J.I., Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening, J. Appl. Crystallogr, 1982, vol. 15, pp. 308–314.

    Article  Google Scholar 

  18. Lipson, H. and Steeple, H., Interpretation of X-ray Powder Diffraction Patterns, London: Macmillan, 1970.

    Google Scholar 

  19. Fedorov, P.P., Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell, Russ. J. Inorg. Chem., 2000, vol. 45, suppl. 3, pp. S268–S291.

    Google Scholar 

  20. Fedorov, P.P., On the definition of the therm “phase” (to the sixtieth anniversary of the discussion between A.V. Storonkin and V.Ya. Anosov), XV Mezhdunarodnaya konferentsiya po khimicheskoi termodinamike v Rossii (XV Int. Conf. on Chemical Thermodynamics in Russia), 2005, vol. 1, p. 106.

    Google Scholar 

  21. Kul’chin, Yu.N., Voznesenskii, S.S., Bezvernyi, A.V., and Dzyuba, V.P., Fotonika biomineral’nykh i biomimeticheskikh struktur i materialov (Photonics of Biomineral and Biomimetic Structures), Moscow: Fizmatlit, 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Additional information

Original Russian Text © M.N. Mayakova, S.V. Kuznetsov, P.P. Fedorov, V.V. Voronov, R.P. Ermakov, K.N. Boldyrev, O.V. Karban’, O.V. Uvarov, A.E. Baranchikov, V.V. Osiko, 2013, published in Neorganicheskie Materialy, 2013, Vol. 49, No. 11, pp. 1242–1246.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayakova, M.N., Kuznetsov, S.V., Fedorov, P.P. et al. Synthesis and characterization of fluoride xerogels. Inorg Mater 49, 1152–1156 (2013). https://doi.org/10.1134/S0020168513110101

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168513110101

Keywords

Navigation