Skip to main content
Log in

Preparation and characterization of mesoporous TiO2-Al2O3 composites

  • Published:
Inorganic Materials Aims and scope

Abstract

We have established conditions for the synthesis of multiphase nanocomposites in a wide range of TiO2/Al2O3 ratios. The nanocomposites have a thermally stable mesoporous structure and large specific surface area. Some of them exhibit photocatalytic activity at λ ≥ 670 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sedneva, T.A., Lokshin, E.P., Kalinnikov, V.T., and Belikov, M.L., Photocatalytic activity of tungsten-modified titanium oxide, Dokl. Phys. Chem., 2012, vol. 443, no. 1, pp. 57–59.

    Article  CAS  Google Scholar 

  2. Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Belyaevskii, A.T., Structure and morphology of iron-modified titania powders, Inorg. Mater., 2011, vol. 47, no. 11, pp. 1205–1213.

    Article  CAS  Google Scholar 

  3. Ramírez, J., Rayo, P., Gutiérrez-Alejandre, A., et al., Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2-Al2O3 binary oxides: Effect of the incorporation method of Ti, Catal. Today, 2005, vol. 109, pp. 54–60.

    Article  Google Scholar 

  4. Reddy, B.M., Rao, K.N., Reddy, G.K., and Bharali, P., Characterization and catalytic activity of V2O5/Al2O3-TiO2 for selective oxidation of 4-methylanisole, J. Mol. Catal. A, 2006, vol. 253, pp. 44–51.

    Article  CAS  Google Scholar 

  5. Borque, M.P., López-Agudo, A., Olguín, E., et al., Catalytic activities of Co(Ni)Mo/TiO2-Al2O3 catalysts in gasoil and thiophene HDS and pyridine HDN: effect of the TiO2-Al2O3 composition, Appl. Catal., A, 1999, vol. 180, pp. 53–61.

    Article  CAS  Google Scholar 

  6. Gun’ko, V.M., Quantum-chemical analysis of adsorption and mechanisms of chemical reactions on the surface of solids, Khim., Fiz. Tekhnol. Poverkhn., 2010, vol. 1, no. 1, pp. 5–18.

    Google Scholar 

  7. Wei, H., Baijun, L., Hongbin, W., and Yu, C., Hydrothermal synthesis of TiO2-Al2O3 composite oxide and catalytic performance of its supported NiMoP for hydrodesulfurization of FCC diesel, Chin. J. Catal., 2012, vol. 33, no. 9, pp. 1586–1593.

    Google Scholar 

  8. Kirszenszteijn, P., Texture of Al2O3-SnO2 binary oxides system obtained via sol-gel-chemistry, Appl. Catal., A, 2003, vol. 245, no. 1, pp. 159–166.

    Article  Google Scholar 

  9. Bouslama, M., Amamra, M.C., Jia, Z., et al., Nanoparticulate TiO2-Al2O3 photocatalytic media: Effect of particle size and polymorphism on photocatalytic activity, ACS Catal., 2012, vol. 2, pp. 1884–1892.

    Article  CAS  Google Scholar 

  10. Kyeong Youl Jung and Seung Bin Park, Effect of calcination temperature and addition of silica, zirconia, alumina on the photocatalytic activity of titania, Korean J. Chem. Eng., 2010, vol. 41, pp. 520–524.

    Google Scholar 

  11. Habibpanah, A.A., Pourhashem, S., and Sarpoolaky, H., Preparation and characterization of photocatalytic titania-alumina composite membranes by sol-gel methods, J. Eur. Ceram. Soc., 2011, vol. 31, no. 15, pp. 2867–2875.

    Article  CAS  Google Scholar 

  12. Smitha, V.S., Baiju, K.V., Perumal, P., et al., Hydrophobic, photoactive titania-alumina nanocrystallites and coatings by an aqueous sol-gel process, Eur. J. Inorg. Chem., 2012, pp. 226–233.

    Google Scholar 

  13. Barajas-Ledesma, E., Gacia-Benjume, M.L., Espitia-Cabrera, I., et al., Determination of the band gap of TiO2-Al2O3 films as a function of processing, Mater. Sci. Eng., B., 2010, vol. 174, pp. 71–73.

    Article  CAS  Google Scholar 

  14. Samsonov, G.V., Bulankova, T.G., Burykina, A.L., et al., Fiziko-khimicheskie svoistva okislov. Spravochnik (Physicochemical Properties of oxides: A Handbook), Samsonov, G.V., Ed., Moscow: Metallurgiya, 1969.

  15. Zilkova, N., Zukal, A., and Cejka, J., Synthesis of organized mesoporous alumina templated with ionic liquids, Microporous Mesoporous Mater., 2006, vol. 95, nos. 1–3, pp. 176–179.

    Article  CAS  Google Scholar 

  16. Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Kalinnikov, V.T., RF Patent 2 435 733, Byull. Izobret., 2011, no. 34.

    Google Scholar 

  17. Zima, T.M., Baklanova, N.I., and Lyakhov, N.Z., Composites of Mesoporous Al2O3 and Fe- or Co-Containing Nanoparticles, Inorg. Mater., 2010, vol. 46, no. 8, pp. 852–857.

    Article  CAS  Google Scholar 

  18. Panasyuk, G.P., Belan, V.N., Voroshilov, I.L., and Shabalin, D.G., Aluminum hydroxide transformations during thermal and vapor heat treatments, Inorg. Mater., 2008, vol. 44, no. 1, pp. 45–50.

    Article  CAS  Google Scholar 

  19. Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area, and Porosity, New York: Academic, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Sedneva.

Additional information

Original Russian Text © T.A. Sedneva, E.P. Lokshin, M.L. Belikov, A.I. Knyazeva, 2013, published in Neorganicheskie Materialy, 2013, Vol. 49, No. 8, pp. 844–852.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedneva, T.A., Lokshin, E.P., Belikov, M.L. et al. Preparation and characterization of mesoporous TiO2-Al2O3 composites. Inorg Mater 49, 786–794 (2013). https://doi.org/10.1134/S0020168513080141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168513080141

Keywords

Navigation