Skip to main content
Log in

Effect of high-pressure/high-temperature processing on V, Mn, Fe, Co, and Ni substitutions for copper in the structure of CaCu3V4O12

  • Published:
Inorganic Materials Aims and scope

Abstract

X-ray diffraction data demonstrate that high-pressure (7.0–8.0 GPa), high-temperature (700–1100°C) processing enables partial V, Mn, Fe, Co, and Ni substitutions for copper in the structure of the double perovskite CaCu3V4O12. The lattice parameter of CaCu3 − x Ni x V4O12 (a = 7.294–7.298 Å) exceeds that of CaCu3V4O12 (a = 7.2845 Å) even though the Ni2+ ion (0.69 Å) is smaller than the Cu2+ ion (0.72 Å). This may be due to lattice distortion caused by the presence of two Jahn-Teller ions (Cu2+ and Ni2+). The oxides CaCu2CoV4O12 and CaCu2FeV4O12 are shown to have metallic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vasil’ev, A.S. and Volkova, O.S., New AC3B4O12 functional materials, Fiz. Nizk. Temp. (Kiev), 2007, vol. 59, no. 3, pp. 29–53.

    Google Scholar 

  2. Shimakava, Y., A-Site-ordered perovskites with intriguing physical properties, Inorg. Chem., 2008, vol. 47, pp. 8562–8570.

    Article  Google Scholar 

  3. Bochu, B., Deschizeaux, M.N., Joubert, J.C., et al., Synthese et caracterisation d’une serie de titanates perovskites isotypes de [CaCu3](Mn4)O12, J. Solid State Chem., 1979, vol. 29, no. 3, pp. 291–298.

    Article  CAS  Google Scholar 

  4. Subramanian, M.A. and Sleight, A.W., ACu3Ti4O12 and ACu3Ru4O12 perovskites: High dielectric constants and valence degeneracy, Solid State Sci., 2002, vol. 4, no. 3, pp. 347–351.

    Article  CAS  Google Scholar 

  5. Kadyrova, N.I., Zakharova, G.S., Zainulin, Yu.G., et al., Synthesis and properties of the new compounds NaCu3V4O12 and CaCu3V4O12 prepared under hydro-static pressure, Dokl. Chem., 2003, vol. 392, nos. 4–6, pp. 351–353.

    Google Scholar 

  6. Kadyrova, N.I., Tyutyunnik, A.P., Zubkov, V.G., et al., Thermobaric synthesis and crystal structure of new compounds, NaCu3V4O12 and CaCu3V4O12, Russ. J. Inorg. Chem., 2003, vol. 48, no. 12, pp. 1785–1790.

    Google Scholar 

  7. Subramanian, M.A., Marshall, W.J., Calvarese, T.G., and Sleight, A.W., Valence degeneracy in CaCu3Cr4O12, J. Phys. Chem. Solids, 2003, vol. 64, pp. 1569–1572.

    Article  CAS  Google Scholar 

  8. Long, Y. and Shimakawa, Y., Intermetallic charge transfer between A-site Cu and B-site Fe in A-site-ordered double perovskites, New J. Phys., 2010, vol. 12, paper 063 029.

  9. Mizokawa, T., Morita, Y., Sudayama, T., et al., Metallic versus insulating behavior in the A-site ordered perovskite oxides ACu3Co4O12 (A = Ca and Y) controlled by Mott and Zhang-Rice physics, Phys. Rev. B: Condens. Matter Mater. Phys., 2009, vol. 80, paper 125 105.

  10. Reevs-McLaren, N., Ferrarelli, M.C., Tung, Y.W., et al., Synthesis, structure and electrical properties of Cu(3.21)Ti91.160Nb(2.63)O(12) and the CuO(x)-TiO(2)-Nb(2)O(5) pseudoternary phase diagram, J. Solid State Chem., 2011, vol. 184, no. 7, pp. 1813–1819.

    Article  Google Scholar 

  11. Ebbinghaus, S.G., Weidenkaff, A., and Cava, R.J., Structural investigations of ACu3Ru4O12 (A — Na, Ca, Sr, La, Nd)—a comparison between XRD-Rietveld and EXAFS results, J. Solid State Chem., 2002, vol. 167, no. 1, pp. 126–136.

    Article  CAS  Google Scholar 

  12. Byeon, S.H., Lufaso, M.W., Parise, J.B., et al., High-pressure synthesis and characterization of perovskites with simultaneous ordering of both the A- and D-site cations, CaCu3Ga2M2O12 (M = Sb, Ta), Chem. Mater., 2003, vol. 15, no. 20, pp. 3798–3804.

    Article  CAS  Google Scholar 

  13. Bochu, B., Buevoz, J.L., Chenavas, J., et al., Bond Lengths in [CaMn3](Mn4)O12—a new Jahn-Teller distortion of Mn3+ octahedra, Solid State Commun., 1980, vol. 36, p. 133.

    Article  CAS  Google Scholar 

  14. Saito, T., Tohyama, T., Woodward, P.M., et al., Material design and high-pressure synthesis of novel A-site-ordered perovskites AMn3Al4O12 (A — Y, Yb, Dy) with square-planar-coordinated Mn3+, Bull. Chem. Soc. Jpn., 2011, vol. 84, no. 7, pp. 802–806.

    Article  CAS  Google Scholar 

  15. Shiraki, H., Saito, T., Tsujimoto, M., et al., Ferromagnetic cuprates CaCu3Ge4O12 and CaCu3Sn4O12 with A-site ordered perovskite structure, Phys. Rev. B: Condens. Matter Mater. Phys., 2007, vol. 76, paper 140 403.

  16. Cheng, G., Zhou, J.-S., and Goodenough, J.B., Evidence of three-dimensional Ising ferromagnetism in the A-site-ordered perovskite CaCu3Ge4O12, Phys. Rev. B: Condens. Matter Mater. Phys., 2011, vol. 83, paper 212 403.

  17. Volkov, V.L., Kadyrova, N.I., Zakharova, G.S., et al., Na0.25Cu0.75VO3: A new perovskite-like vanadium bronze, Inorg. Mater., 2004, vol. 40, no. 2, pp. 184–187.

    Article  CAS  Google Scholar 

  18. Kadyrova, N.I., Zainulin, Yu.G., Volkov, V.L, et al., High-pressure defect phase Bi0.67Cu3V4O12, Russ. J. Inorg. Chem., 2005, vol. 50, no. 5, pp. 655–658.

    Google Scholar 

  19. Kadyrova, N.I., Zakharova, G.S., Korolev, A.V., et al., High-pressure defect lanthanide phases LnxCu3V4O12 (Ln = La, Eu, Ho), Dokl. Chem., 2006, vol. 409,part 1, pp. 120–123.

    Article  CAS  Google Scholar 

  20. Volkov, V.L., Kadyrova, N.I., Zakharova, G.S., et al., Ion state of atoms and the properties of perovskite-like compound CaCu3V4O12, Russ. J. Inorg. Chem., 2007, vol. 52, no. 3, pp. 329–333.

    Article  Google Scholar 

  21. Volkov, V.L., Kadyrova, N.I., Zakharova, G.S., et al., Valence state of atoms in the perovskite-like phase SrxCu3V4O12 (x = 0.67−1.0) and its properties, Inorg. Mater., 2007, vol. 43, no. 6, pp. 660–665.

    Article  CAS  Google Scholar 

  22. Kadyrova, N.I., Zainulin, Yu.G., Volkov, V.L., et al., High-pressure defect phase LaxCu3V4O12, Russ. J. Inorg. Chem., 2007, vol. 52, no. 6, pp. 825–828.

    Article  Google Scholar 

  23. Kadyrova, N.I., Zainulin, Yu.G., Volkov, V.L., et al., High-pressure defect phase CexCu3V4O12, Russ. J. Inorg. Chem., 2008, vol. 53, no. 10, pp. 1542–1545.

    Article  Google Scholar 

  24. Xiang, H. and Wu, Z., Ab initio study on the electronic, magnetic, and mechanical properties of CaCu3V4O12, Inorg. Chem., 2008, vol. 47, pp. 2706–2709.

    Article  CAS  Google Scholar 

  25. Shikari, H., Saito, T., Azuma, M., and Shimakava, Y., Metallic behavior in A-site-ordered perovskites ACu3V4O12 with A = Na+, Ca2+ and Y3+, Phys. Soc. Jpn., 2008, vol. 77, no. 6, paper 064 705.

    Google Scholar 

  26. Kadyrova, N.I., Zainulin, Yu.G., Volkov, V.L., et al., High-pressure defect phase NdxCu3V4O12, Russ. J. Inorg. Chem., 2009, vol. 54, no. 12, pp. 1872–1875.

    Article  Google Scholar 

  27. Kadyrova, N.I., Zainulin, Yu.G., Zakharova, G.S., et al., Synthesis and properties of high-pressure phase [ErxCu3](V4)O12, Bull. Russ. Acad. Sci.: Phys., 2009, vol. 73, no. 11, pp. 1539–1541.

    Article  Google Scholar 

  28. Morita, Y., Sudayama, T., Takubo, K., et al., Valence fluctuations and correlated metallic states in A-site ordered perovskite oxides ACu(3)V(4)O(12) (A = Na, Ca, and Y), Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, paper 165 111.

  29. Kadyrova, N.I., Zaynulin, Yu.G., Tyutyunnik, A.P., et al., Nonstoichiometric high-pressure phase of TmxCu3V4O12, Bull. Russ. Acad. Sci.: Phys., 2011, vol. 75, no. 8, pp. 1163–1165.

    Article  CAS  Google Scholar 

  30. Kadyrova, N.I., Zainulin, Yu.G., Tyutyunnik, A.P., et al., High-pressure nonstoichiometric phase SmCu3V4O12, Russ. J. Inorg. Chem., 2011, vol. 56, no. 6, pp. 919–923.

    Article  CAS  Google Scholar 

  31. Kadyrova, N.I., Zainulin, Yu.G., Zakharova, G.S., et al., Synthesis and properties of the high-pressure phase CaCoCu2V4O12, Russ. J. Inorg. Chem., 2011, vol. 56, no. 11, pp. 1717–1722.

    Article  CAS  Google Scholar 

  32. Kadyrova, N.I., Zainulin, Yu.G., Tyutyunnik, A.P., et al., High-pressure/high-temperature synthesis, crystal structure, and electrical properties of CaCu3 − x FexV4O12, Inorg. Mater., 2011, vol. 47, no. 12, pp. 1396–1401.

    Article  CAS  Google Scholar 

  33. Strepetov, S.V., Surat, L.L., Dobosh, V.G., et al., V2O5-MnO-Mn2O3-CaO system, Russ. J. Inorg. Chem., 1985, vol. 30, no. 8, pp. 2168–2170.

    CAS  Google Scholar 

  34. Leinenweber, K., Linton, J., Navrotsky, A., et al., High-pressure perovskites on the join CaTiO3-FeTiO3, Phys. Chem. Miner., 1995, vol. 22, pp. 251–258.

    Article  CAS  Google Scholar 

  35. Golenishev-Kutuzov, A.V., Golenishev-Kutuzov, V.A., and Kalimullin, R.I., Ultrasonic characterization of Jahn-Teller ions in dielectric, ferroelectric, and magnetic crystals, Vestn. Ross. Fonda Fundam. Issled., 2005, vol. 39, no. 1, pp. 25–37.

    Google Scholar 

  36. Makarov, E.S., Izomorfizm atomov v kristallakh (Isomorphism of Atoms in Crystals), Moscow: Atomizdat, 1973.

    Google Scholar 

  37. Petrik, M.V., Medvedeva, N.I., Kadyrova, N.I., et al., Effect of electron correlation on the electronic structure and magnetic properties of the perovskite-like high-pressure phase ErxCu3V4O12, Phys. Solid State, 2010, vol. 52, no. 8, pp. 1709–1713.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.G. Zainulin, 2013, published in Neorganicheskie Materialy, 2013, Vol. 49, No. 7, pp. 771–776.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zainulin, Y.G. Effect of high-pressure/high-temperature processing on V, Mn, Fe, Co, and Ni substitutions for copper in the structure of CaCu3V4O12 . Inorg Mater 49, 721–725 (2013). https://doi.org/10.1134/S0020168513060198

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168513060198

Keywords

Navigation