Skip to main content
Log in

Electro-conductive composites based on titania and carbon nanotubes

  • Published:
Inorganic Materials Aims and scope

Abstract

Carbon-ceramic composites have been prepared by mechanical ball-milling and ultrasonic treatment of mixtures of titania with carbon nanomaterials, and the optimal preparation conditions have been determined. The dependence of electrical conductivity of the composites on the mass fraction of carbon nanomaterials (1–5 mass. %) has been ascertained, and it has been found that a carbon nanotubes mass fraction of 3% gives rise to a sharp increase in the electrical conductivity up to 2.2 × 10−3 S/cm. It has been shown that the carbon-ceramic composites are promising electrocatalyst supports for electrochemical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miracle, D.B. and Donaldson, S.L., ASM Handbook: Composites, 2001, vol. 21.

  2. Karabasov, Yu.S., Novye materialy (New Materials), Moscow: MISIS, 2002.

    Google Scholar 

  3. Arsecularatne, J.A. and Zhang, L.C., Carbon nanotube reinforced ceramic composites and their performance, Recent Pat. Nanotechnol., 2007, vol. 1, no. 3, pp. 176–185.

    Article  CAS  Google Scholar 

  4. Eder, D., Carbon nanotube—inorganic hybrids, Chem. Rev., 2010, vol. 110, pp. 1348–1385.

    Article  CAS  Google Scholar 

  5. Blagoveshchenskii, Yu.V., Van, K.V., Volodin, A.A., et al., Preparation and structure of ceramic-matrix composites containing carbon nanotubes, Kompoz. Nanostrukt., 2010, no. 1, pp. 30–39.

    Google Scholar 

  6. Yuchi Fan and Lianjun Wang, Preparation and electrical properties of graphene nanosheet/Al2O3 composites, Carbon, 2010, vol. 48, pp. 1743–1749.

    Article  CAS  Google Scholar 

  7. Bondar, A.M. and Iordache, I., Carbon/ceramic composites designed for electrical application, J. Opt. Adv. Mater., 2006, vol. 8, no. 2, pp. 631–637.

    CAS  Google Scholar 

  8. Su, F.-H., Zhang, Zh.-Zh., and Wang, K., Friction and wear properties of carbon fabric composites filled with nano-Al2O3 and nano-Si3N4, Composites, 2006, vol. 37, pp. 1351–1357.

    Article  Google Scholar 

  9. Fényi, B., Hegman, N., and Wéber, F., DC conductivity of silicon nitride based carbon-ceramic composites, Proc. Appl. Ceram., 2007, vol. 1, nos. 1–2, pp. 57–61.

    Google Scholar 

  10. Zheng, G.-B., Sano, H., and Uchiyama, Y., A Carbon nanotube-enhanced SiC coating for the oxidation protection of C/C composite materials, Composites, 2011, vol. 42, pp. 2158–2162.

    Article  Google Scholar 

  11. Guo, S.Q., Sivakumar, R., Kitazawa, H., and Kagawa, Y., Electrical properties of silica-based nanocomposites with multiwall carbon nanotubes, J. Am. Ceram. Soc., 2007, vol. 90, no. 5, pp. 1667–70.

    Article  CAS  Google Scholar 

  12. Yu, J., Fan, J., and Cheng, B., Dye-sensitized solar cells based on anatase TiO2 hollow spheres/carbon nanotubes composite films, J. Power Sources, 2011, vol. 196, pp. 7891–7898.

    Article  CAS  Google Scholar 

  13. Ivanshina, O.Yu., Tamm, M.E., Gerasimova, E.V., et al., Synthesis and electrocatalytic activity of platinum nanoparticle/carbon nanotube composites, Inorg. Mater., 2011, vol. 47, no. 6, pp. 618–625.

    Article  CAS  Google Scholar 

  14. Martínez, C., Canle, M., and Fernández, M.I., Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes-anatase composites, Appl. Catal., B, 2011, vol. 102, pp. 563–571.

    Article  Google Scholar 

  15. Li, X.L., Li, C., and Zhang, Y., Atomic layer deposition of ZnO on multi-walled carbon nanotubes and its use for synthesis of CNT-ZnO heterostructures, Nanoscale Res. Lett., 2010, vol. 5, pp. 1836–1840.

    Article  CAS  Google Scholar 

  16. Jiang, L.Q. and Gao, L., Carbon nanotubes-metal nitride composites: A new class of nanocomposites with enhanced electrical properties, J. Mater. Chem., 2005, vol. 15, no. 2, pp. 260–266.

    Article  CAS  Google Scholar 

  17. Shi, S.L. and Liang, J., Electronic transport properties of multiwall carbon nanotubes/yttria-stabilized zirconia composites, J. Appl. Phys., 2007, vol. 101, no. 2, paper 023 708.

    Google Scholar 

  18. Wu, Zh.-Sh., Zhou, G., and Yina, Li-Ch., Graphene/metal oxide composite electrode materials for energy storage, Nano Energy, 2012, no. 1, pp. 107–131.

    Google Scholar 

  19. Tarasov, B.P., Muradyan, V.E., and Volodin, A.A., Synthesis, properties, and some applications of carbon nanomaterials, Izv. Akad. Nauk, Ser. Khim., 2011, no. 7, pp. 1237–1249.

    Google Scholar 

  20. Volodin, A.A., Chikhirev, D.V., Zolotarenko, A.D., et al., Fabrication and properties of composites of metal oxides and carbon nanotubes, in Nanostruktury v kondensirovannykh sredakh (Nanostructures in Condensed Media), Minsk: BGU, 2011, pp. 286–291.

    Google Scholar 

  21. Volodin, A.A., Fursikov, P.V., Kasumov, Yu.A., et al., Synthesis of carbon nanofibers through catalytic pyrolysis of ethylene and methane on lanthanum nickel hydrides, Izv. Akad. Nauk, Ser. Khim., 2005, no. 10, pp. 2210–2214.

    Google Scholar 

  22. Volodin, A.A., Fursikov, P.V., Kasumov, Yu.A., et al., Synthesis of carbon nanostructures on Fe-Mo catalysts supported on modified SiO2, Izv. Akad. Nauk, Ser. Khim., 2006, no. 8, pp. 1372–1376.

    Google Scholar 

  23. Volodin, A.A., Gerasimova, E.V., and Tarasov, B.P., Synthesis of carbon nanofibers through catalytic ethylene pyrolysis in the presence of vapors of volatile components, Izv. Akad. Nauk, Ser. Khim., 2011, no. 3, pp. 398–403.

    Google Scholar 

  24. Streletskii, A.N., Leonov, A.V., and Butyagin, P.Yu., Amorphization of silicon during mechanical treatment of its powders: 1. Process kinetics, Colloid J., 2001, vol. 63, no. 5, pp. 630–634.

    Article  CAS  Google Scholar 

  25. Butyagin, P.Yu. and Streletskii, A.N., The kinetics and energy balance of mechanochemical transformations, Phys. Solid State, 2005, vol. 47, no. 5, pp. 856–863.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Volodin.

Additional information

Original Russian Text © A.A. Volodin, A.A. Belmesov, V.B. Murzin, P.V. Fursikov, A.D. Zolotarenko, B.P. Tarasov, 2013, published in Neorganicheskie Materialy, 2013, Vol. 49, No. 7, pp. 702–708.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volodin, A.A., Belmesov, A.A., Murzin, V.B. et al. Electro-conductive composites based on titania and carbon nanotubes. Inorg Mater 49, 656–662 (2013). https://doi.org/10.1134/S0020168513060174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168513060174

Keywords

Navigation