Advertisement

Inorganic Materials

, Volume 49, Issue 1, pp 76–81 | Cite as

Synthesis and luminescence of ultrafine Er3+- and Yb3+-doped Gd11SiP3O26 and Gd14B6Ge2O34 particles for cancer diagnostics

  • V. A. Krut’koEmail author
  • A. V. Ryabova
  • M. G. Komova
  • A. V. Popov
  • V. V. Volkov
  • Yu. F. Kargin
  • V. B. Loshchenov
Article

Abstract

In search of new contrast materials for NMR and fluorescence diagnostics and neutron capture therapy of cancer, we have synthesized ultrafine Er3+- and Yb3+-doped Gd11SiP3O26 and Gd14B6Ge2O34 particles and studied their luminescence properties. We measured the Er3+ upconversion luminescence spectra of the gadolinium erbium ytterbium phosphosilicates and borate germanates in the visible range and evaluated the absolute quantum yield of their luminescence. The quantum yield of luminescence in the gadolinium phosphosilicate Gd11SiP3O26 doped with 5.0 at % Yb and 2.5 at % Er is comparable to that in known Yb3+/Er3+ codoped fluorides. The nonradiative Yb3+ → Er3+ energy transfer efficiency is evaluated.

Keywords

Upconversion Luminescence Phosphosilicates Luminescence Decay Kinetic Absolute Quantum Yield Violet Luminescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, F. and Liu, X., Recent Advances in the Chemistry of Lanthanide-Doped Up-Conversion Nanocrystals, Chem. Soc. Rev., 2009, vol. 38, pp. 976–989.CrossRefGoogle Scholar
  2. 2.
    Xiong, L., Chen, Z., Yu, M., et al., Synthesis, Characterization, and In Vivo Targeted Imaging of Amine-Functionalized Rare-Earth Up-Converting Nanophosphors, Biomaterials, 2009, vol. 30, no. 29, pp. 5592–5600.CrossRefGoogle Scholar
  3. 3.
    Cao, T., Yang, T., Gao, Y., et al., Water-Soluble NaYF4:Yb/Er Up-Conversion Nanophosphors: Synthesis, Characteristics and Application in Bioimaging, Inorg. Chem. Commun., 2010, vol. 13, pp. 392–394.CrossRefGoogle Scholar
  4. 4.
    Wang, C., Cheng, L., and Liu, Z., Drug Delivery with Up-Conversion Nanoparticles for Multi-Functional Targeted Cancer Cell Imaging and Therapy, Biomaterials, 2011, vol. 32, pp. 1110–1120.CrossRefGoogle Scholar
  5. 5.
    Dzhurinskii, B.F. and Ilyukhin, A.B., Crystal Structure of Gd14(GeO4)2(BO3)6O8, Russ. J. Inorg. Chem., 2000, vol. 45, no. 1, pp. 1–5.Google Scholar
  6. 6.
    Krut’ko, V.A., Burkov, V.I., Alyabeva, L.N., et al., Structure Effect on the Absorption and Circular Dichroism Spectra of Sm14B6Ge2O34 Crystals, Inorg. Mater., 2012, vol. 48, no. 5, pp. 507–511.Google Scholar
  7. 7.
    Lysanova, G.V., Krut’ko, V.A., Komova, M.G., et al., Synthesis and Physicochemical Properties of Crystalline and Glassy La14 − xyGdxEuy(BO3)6(GeO4)2O8 Solid Solutions, Inorg. Mater., 2002, vol. 38, no. 11, pp. 1153–1156.CrossRefGoogle Scholar
  8. 8.
    Popov, A.V., Ryabova, A.V., Komova, M.G., et al., Spectroscopy of Nanoparticles Based on Gd14B6Ge2O34 Polycrystals and La2O3-B2O3 Glasses Activated by Nd3+ Ions for Cancer Diagnostics, Kvantovaya Elektron. (Moscow), 2010, vol. 40, no. 12, pp. 1094–1097.CrossRefGoogle Scholar
  9. 9.
    Dzhurinskii, B.F. and Krut’ko, V.A., New Mixed Oxide Compounds of Lanthanides: Phosphosilicates Ln11O10(SiO4)(PO4)3 (Ln = Pr-Er), Russ. J. Inorg. Chem., 2000, vol. 45, no. 8, pp. 1157–1159.Google Scholar
  10. 10.
    Chudinova, N.N., Krut’ko, V.A., Bandurkin, G.A., et al., Mixed-Anion Compounds of Ln2O3 and Group III to VI Acid Oxides: Structure and Properties, Sovremennye problemy obshchei i neorganicheskoi khimii: Sbornik trudov II mezhdunarodnoi konferentsii (Proc. II Int. Conf. Priority Issues in General and Inorganic Chemistry), Moscow, 2009, pp. 50–54.Google Scholar
  11. 11.
    Popov, A.V., Krut’ko, V.A., Komova, M.G., et al., New Inorganic Gadolinium- and Boron-Containing Materials Activated with Nd3+ Ions for Early Luminescence Diagnostics and Neutron Capture Therapy of Cancer, Materialy XVII vserossiiskoi konferentsii “Optika i spektroskopiya kondensirovannykh sred” (Proc. All-Russia Conf. Optics and Spectroscopy of Condensed Media), Krasnodar, 2011, pp. 73–79.Google Scholar
  12. 12.
    Auzel, F., Up-Conversion and Anti-Stokes Processes with f and d Ions in Solids, Chem. Rev., 2004, vol. 104, pp. 139–173.CrossRefGoogle Scholar
  13. 13.
    Yttrium Aluminum Garnet Laser, Tr. Inst. Obshch. Fiz., Ross. Akad Nauk, 1989, vol. 19, pp. 5–68.Google Scholar
  14. 14.
    Malov, A.V., Ryabochkina, P.A., Popov, A.V., and Bol’shakova, E.V., Interaction of Er3+ Ions in Er-Doped Calcium-Niobium-Gallium Garnet Crystals, Kvantovaya Elektron. (Moscow) 2010, vol. 40, no. 5, pp. 377–380.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. A. Krut’ko
    • 1
    Email author
  • A. V. Ryabova
    • 2
  • M. G. Komova
    • 1
  • A. V. Popov
    • 2
    • 3
  • V. V. Volkov
    • 2
  • Yu. F. Kargin
    • 4
  • V. B. Loshchenov
    • 2
  1. 1.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  2. 2.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  3. 3.Institute of PhysicsUniversity of TartuTartuEstonia
  4. 4.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations