Skip to main content
Log in

Structural and magnetic properties of BaFe12 − 2x Co x Sn x O19 modified M-type hexaferrites

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of heterovalent substitution of a Co2+ + Sn4+ combination for Fe3+ on the crystal chemistry and magnetic properties of M-type barium hexaferrite (BHF). The results demonstrate that 2Fe3+ → Co2+ + Sn4+ heterovalent substitution allows one to tune the magnetic properties of M-type BHF (to reduce its coercive force (H c), while maintaining its magnetization (M s) at the level of unsubstituted BHF (x = 0)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krupička, S., Physik der Ferrite und der verwandten magnetischen Oxide, Prague: Academia, 1973. Translated under the title Fizika ferritov i rodstvennykh im magnitnykh okislov, Moscow: Mir, 1976, vol. 2, p. 504.

    Book  Google Scholar 

  2. Smit, J. and Wijn, H.P.J., Ferrites: Physical Properties of Ferromagnetic Oxides in Relation to Their Technical Applications, Eindhoven: Philips Tech. Libr., 1959. Translated under the title Ferrity, Moscow: Inostrannaya Literatura, 1962, p. 504.

    Google Scholar 

  3. Gubin, S.P., Koksharov, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Magnetic Nanoparticles: Preparation Techniques, Structure, and Properties, Usp. Khim., 2005, vol. 74, no. 6, pp. 540–574.

    Article  Google Scholar 

  4. Fu, L., Liu, X., Yi, Z., Dravid, V.P., and Mirkin, C.A., Nanopatterning of Hard Magnetic Nanostructures via Dip-Pen Nanolithography and a Sol-Based Ink, Nano Lett., 2003, vol. 3, no. 6, pp. 757–760.

    Article  CAS  Google Scholar 

  5. Pankhurst, Q.A. and Pollard, R.S., Fine Particle Magnetic Oxides, J. Phys. Condens. Matter, 1993, vol. 5, pp. 8487–8508.

    Article  CAS  Google Scholar 

  6. Lebedev, S.V., Patton, C.E., Wittenauer, M.A., et al., Frequency and Temperature Dependence of the Ferromagnetic Resonance Linewidth in Single Crystal Platelets and Pulsed Laser Deposited Films of Barium Ferrite, J. Appl. Phys., 2002, vol. 91, no. 7, pp. 4426–4431.

    Article  CAS  Google Scholar 

  7. Haijun, Z., Zhichao, L., Chenliang, Ma, et al., Complex Permittivity, Permeability, and Microwave Absorption of Zn- and Ti-Substituted Barium Ferrite by Citrate Sol/Gel Process, Mater. Sci. Eng., B., 2002, vol. 96, pp. 289–295.

    Article  Google Scholar 

  8. Kagotani, T., Fujiwara, D., Sugimoto, S., et al., Enhancement of GHz Electromagnetic Wave Absorption Characteristics in Aligned M-Type Barium Ferrite Ba(1 − x)La(x)Zn(x)Fe(12 − xy)(Me0.5Mn0.5)yO19 (x = 0.0–0.5; y = 1.0–3.0, Me: Zr, Sn) by Metal Substitution, J. Magn. Magn. Mater., 2004, vols. 272–276, pp. E1813–E1815.

    Article  Google Scholar 

  9. Meshram, M.R., Agarwal, N.K., Sinha, B., and Misra, P.S., Characterization of M-Type Barium Hexagonal Ferrite-Based Wide Band Microwave Absorber, J. Magn. Magn. Mater., 2004, vol. 271, pp. 207–213.

    Article  CAS  Google Scholar 

  10. Müller, R., Hergt, R. Dutz, S., et al., Nanocrystalline Iron Oxide and Ba Ferrite Particles in the Superparamagnetism-Ferromagnetism Transition Range with Ferrofluid Applications, J. Phys. Condens. Matter, 2006, vol. 18, pp. 2527–2542.

    Article  Google Scholar 

  11. Pollert, E., Veverka, P., Veverka, M., et al., Search of New Core Materials for Magnetic Fluid Hyperthermia: Preliminary Chemical and Physical Issues, Prog. Solid State Chem., 2009, vol. 37, pp. 1–14.

    Article  CAS  Google Scholar 

  12. Belous, A.G., V’yunov, O.I., Pashkova, E.V., et al., Mössbauer Study and Magnetic Properties of M-Type Barium Hexaferrite Doped with Co + Ti and Bi + Ti Ions, J. Phys. Chem. B, 2006, vol. 110, pp. 26477–26481.

    Article  CAS  Google Scholar 

  13. Mendoz-Suareza, G., Corral-Huacuz, J.C., Contreras-Garcιa, M.E., and Juarez-Medina, H., Magnetic Properties of BaFe11.6 − 2x CoxTixO19 Particles Produced by Sol-Gel and Spray-Drying, J. Magn. Magn. Mater., 2001, vol. 234, pp. 73–79.

    Article  Google Scholar 

  14. Koga, N. and Tsutaoka, T., Preparation of Substituted Barium Ferrite BaFe12 − x (Ti0.5Co0.5)xO19 by Citrate Precursor Method and Compositional Dependence of Their Magnetic Properties, J. Magn. Magn. Mater., 2007, vol. 313, pp. 168–175.

    Article  CAS  Google Scholar 

  15. He, H.Y., Huang, J.F., Cao, L.Y., et al., Influence of Preheating on Crystalline Anisotropy and Particle Size of BaTiCoFe10O19 Sol-Gel Powders, Mater. Technol., 2007, vol. 2, pp. 30–32.

    Google Scholar 

  16. Sláma, J., Grusková, A., and Papánov, M., Properties of M-Type Barium Ferrite Doped by Selected Ions, J. Electr. Eng., 2005, vol. 56, nos. 1–2, pp. 21–25.

    Google Scholar 

  17. Shams, M.H., Mohammad, S., Salehi, A., and Ghasemi, A., Electromagnetic Wave Absorption Characteristics of Mg-Ti Substituted Ba-Hexaferrite, Mater. Lett., 2008, vol. 62, pp. 1731–1733.

    Article  CAS  Google Scholar 

  18. Mendoza-Suarez, G. and Rivas-Viazquez, L.P., Magnetic Properties and Microstructure of BaFe11.6 − 2x TixMxO19 (M = Co, Zn, Sn) Compounds, Phys. B (Amsterdam, Neth.), 2003, vol. 339, pp. 110–118.

    Article  CAS  Google Scholar 

  19. Lisjak, D. and Drofenik, M., Synthesis and Characterization of A-Sn-Substituted (A = Zn, Ni, Co) BaM-Hexaferrite Powders and Ceramics, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 1841–1845.

    Article  CAS  Google Scholar 

  20. Nilpairach, S. and Udomkichdaecha, W., Coercivity of the Co-Precipitated Prepared Hexaferrites, BaFe12 − 2x CoxSnxO19, J. Korean Phys. Soc., 2006, vol. 48, no. 5, pp. 939–945.

    CAS  Google Scholar 

  21. Haijun, Z., Zhichao, L., Chenliang, Ma., et al., Preparation and Microwave Properties of Co- and Ti-Doped Barium Ferrite by Citrate Sol-Gel Process, Mater. Chem. Phys., 2003, vol. 80, pp. 129–134.

    Article  Google Scholar 

  22. Rosler S., Wartewig P., Laugbein H. Synthesis and Characterization of Hexagonal Ferrites BaFe12 − 2x ZnxTixO19 (0 ≤ x ≤ 2) by Thermal Decomposition of Freeze-Dried Precursor, Cryst. Res. Technol., 2003, vol. 38, no. 11, pp. 927–934.

    Article  Google Scholar 

  23. Chalyi, V.P., Gidrookisi metallov (Metal Hydroxides), Kiev: Naukova Dumka, 1972, p. 114.

    Google Scholar 

  24. Gavrilenko, O.N., Pashkova, E.V., and Belous, A.G., Effect of Synthesis Methods on Nanosized Tin Dioxide Particles, Russ. J. Inorg. Chem., 2007, vol. 52, no. 12, pp. 1835–1839.

    Article  Google Scholar 

  25. Spitsyn, V.I. and Martynenko, L.I., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Mosk. Gos. Univ., 1994, vol. 2, p. 624.

    Google Scholar 

  26. Skopenko, V.V. and Zub, V.Ya., Koordinatsionnaya khimiya (Coordination Chemistry), Kyiv: Kyivsk. Univ., 2002, p. 331.

    Google Scholar 

  27. Shannon, R.D., Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. D. Solov’eva.

Additional information

Original Russian Text © E.D. Solov’eva, E.V. Pashkova, A.E. Perekos, A.G. Belous, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 11, pp. 1280–1285.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solov’eva, E.D., Pashkova, E.V., Perekos, A.E. et al. Structural and magnetic properties of BaFe12 − 2x Co x Sn x O19 modified M-type hexaferrites. Inorg Mater 48, 1147–1152 (2012). https://doi.org/10.1134/S0020168512110143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512110143

Keywords

Navigation