Skip to main content
Log in

Crystal structure and dielectric properties of (1 − x)(NaBi)1/2TiO3 · xBi(ZnTi)1/2O3 perovskite solid solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

(1 − x)(NaBi)1/2TiO3 · xBi(ZnTi)1/2O3 ceramics have been prepared by solid-state reactions. In the composition range x < 0.2, we obtained (NaBi)1/2TiO3-based solid solutions with a rhombohedrally distorted perovskite structure. With increasing x, the degree of rhombohedral distortion, the angle of antiphase tilts of oxygen octahedra about the hexagonal axis in the unit cell, and the octahedral strain decrease systematically and the unit-cell parameters a H and c H increase. We have studied the dielectric properties of the solid solutions using ceramic samples. The results demonstrate that the ceramics undergo a high-temperature diffuse ferroelectric phase transition. Near the temperature of the maximum in the real part of the dielectric permittivity (510–610 K), the ceramics have low ɛ′ dispersion and low dielectric losses. At low temperatures (below 500 K), the dielectric response of the materials exhibits ferroelectric relaxor behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross, L.E., Materials Science: Lead-Free at Last 100 and 50 Years Ago, Nature, 2004, vol. 432, pp. 24–25.

    Article  CAS  Google Scholar 

  2. Zhang, S., Xia, R., and Shrout, T.R., Lead-Free Piezoelectric Ceramics vs. PZT?, J. Electroceram., 2007, vol. 19, pp. 251–257.

    Article  Google Scholar 

  3. Belik, A.A., Iikubo, S., Kodama, K., et al., Neutron Powder Diffraction Study on the Crystal and Magnetic Structures of BiCoO3, Chem. Mater., 2006, vol. 18, no. 3, pp. 798–803.

    Article  CAS  Google Scholar 

  4. Suchomel, M.R., Fogg, A.M., Allix, M., et al., Bi2ZnTiO6: A Lead-Free Closed-Shell Polar Perovskite with a Calculated Ionic Polarization of 150 °C cm−2, Chem. Mater., 2006, vol. 18, no. 21, pp. 4987–4989.

    Article  CAS  Google Scholar 

  5. Khalyavin, D.D., Salak, A.N., Vyshatko, N.P., et al., Crystal Structure of Metastable Perovskite Bi(Mg1/2Ti1/2)O3: Bi-Based Structural Analogue of Antiferroelectric PbZrO3, Chem. Mater., 2006, vol. 18, pp. 5104–5110.

    Article  CAS  Google Scholar 

  6. Isupov, V.A., Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 Perovskites and Their Solid Solutions, Ferroelectrics, 2005, vol. 315, pp. 123–147.

    Article  CAS  Google Scholar 

  7. Marchet, P., Boucher, E., Dorcet, V., and Mercurio, J.P., Dielectric Properties of Some Low-Lead or Lead-Free Perovskite-Derived Materials: Na0.5Bi0.5TiO3-PbZrO3, Na0.5Bi0.5TiO3-BiScO3 and Na0.5Bi0.5TiO3-BiFeO3 Ceramics, J. Eur. Ceram. Soc., 2006, vol. 26, no. 14, pp. 3037–3041.

    Article  CAS  Google Scholar 

  8. Takenaka, T., Nagata, H., Hiruma, Y., et al., Lead-Free Piezoelectric Ceramics Based on Perovskite Structures, J. Electroceram., 2007, vol. 19, no. 4, pp. 259–265.

    Article  CAS  Google Scholar 

  9. Olekhnovich, N.M., Moroz, I.I., Pushkarev, A.V., et al., Temperature Impedance Spectroscopy of (1 − x)Na1/2Bi1/2TiO3-xLaMg1/2Ti1/2O3, Phys. Solid State, 2008, vol. 50, no. 3, pp. 490–495.

    Article  CAS  Google Scholar 

  10. Jones, G.O., Kreisel, J., Jennings, V., et al., Investigation of a Peculiar Relaxor Ferroelectric: Na0.5Bi0.5TiO3, Ferroelectrics, 2002, vol. 270, no. 1, pp. 191–196.

    Article  CAS  Google Scholar 

  11. Jones, G.O. and Thomas, P.A., Investigation of the Structure and Phase Transitions in the Novel A-Site Substituted Distorted Perovskite Compound Na0.5Bi0.5TiO3, Acta Crystallogr., Sect. B: Struct. Sci., 2002, vol. 58, pp. 168–178.

    Article  CAS  Google Scholar 

  12. Thomas, N.W., A Re-Examination of the Relationship between Lattice Strain, Octahedral Tilt Angle and Octahedral Strain in Rhombohedral Perovskites, Acta Crystallogr., Sect. B: Struct. Sci., 1996, vol. 52, pp. 954–960.

    Article  Google Scholar 

  13. Uchino, K. and Nomura, Sh., Critical Exponents of the Dielectric Constants in Diffused-Phase-Transition Crystals, Ferroelectrics, 1982, vol. 44, no. 1, pp. 55–61.

    Article  CAS  Google Scholar 

  14. Gomah-Pettry, J.-R., Saïd, S., Marchet, P., and Mercurio, J.-P., Sodium-Bismuth Titanate Based Lead-Free Ferroelectric Materials, J. Eur. Ceram. Soc., 2004, vol. 24, no. 6, pp. 1165–1169.

    Article  CAS  Google Scholar 

  15. Salak, A.N. and Ferreira, V.M., Structure and Dielectric Properties of the (1 − x)La(Mg1/2Ti1/2)O3−x (Na1/2Bi1/2)TiO3 Microwave Ceramics, J. Phys.: Condens. Matter, 2006, vol. 18, pp. 5703–5714.

    Article  CAS  Google Scholar 

  16. Viehland, D., Jang, S.J., Cross, L.E., and Wuttig, M., Freezing of the Polarization Fluctuations in Lead Magnesium Niobate Relaxors, J. Appl. Phys., 1990, vol. 68, pp. 2916–2921.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Radyush.

Additional information

Original Russian Text © Yu.V. Radyush, N.M. Olekhnovich, A.V. Pushkarev, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 11, pp. 1264–1268.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radyush, Y.V., Olekhnovich, N.M. & Pushkarev, A.V. Crystal structure and dielectric properties of (1 − x)(NaBi)1/2TiO3 · xBi(ZnTi)1/2O3 perovskite solid solutions. Inorg Mater 48, 1131–1135 (2012). https://doi.org/10.1134/S0020168512110118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512110118

Keywords

Navigation