Skip to main content
Log in

Effect of the crystallinity of BaTiO3 powders prepared using the merker method on the properties of PTCR ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract

Barium titanate powders differing in particle size (110–740 nm) were prepared by calcining barium titanyl oxalate precipitated by the Merker method. The powders were sintered to produce PTCR ceramics with the composition 100(Ba0.89Ca0.08Pb0.03)TiO3 + 0.8TiO2 + 0.7Y + 0.1Mn + 2.5SiO2 and electrical properties of the ceramics were studied. The results demonstrate that improving the crystallinity of the barium titanate powder suppresses recrystallization of the ceramics and has a significant effect on their resistance ratio and electric strength. We found the optimal range of calcination temperatures (950–1000°C) for barium titanyl oxalate which ensures the highest electric strength of thermistors with a resistance of 31 Ω. The average crystallite size of the parent barium titanate powder is ∼250–320 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y.L. and Yang, S.F., PTCR Effect in Donor Doped Barium Titanate: Review of Compositions, Microstructures, Processing and Properties, Adv. Appl. Ceram., 2011, vol. 110, no. 5, pp. 257–269.

    Article  CAS  Google Scholar 

  2. Al-Allak, H.M., Anomalous Increase in the Resistivity of n-Doped BaTiO3-Based Ceramics with Pressure Observed at Room Temperature, J. Am. Ceram. Soc., 2011, vol. 94, no. 9, pp. 2757–2760.

    Article  CAS  Google Scholar 

  3. Syrtsov, S.R., Shut, V.N., Kashevich, I.F., et al., Positive Temperature Coefficient of Resistivity in Thin Films of Barium Titanate, Mater. Sci. Semicond. Process., 2002, vol. 5, nos. 2–3, pp. 223–225.

    Article  CAS  Google Scholar 

  4. Blamey, J.M. and Parry, T.V., The Effect of Processing Variables on the Mechanical and Electrical Properties of Barium-Titanate Positive-Temperature-Coefficient-Of-Resistance Ceramics: I. Additives and Processing Prior to Sintering, J. Mater. Sci., 1993, vol. 28, no. 16, pp. 4311–4316.

    Article  CAS  Google Scholar 

  5. Park, K., Ha, J.-G., Kim, C.-W., and Kim, J.-G., PTCR Characteristics of Semiconducting Barium Titanate Ceramics Produced by High-Energy Ball-Milling, J. Mater. Sci., 2008, vol. 19, no. 4, pp. 357–362.

    CAS  Google Scholar 

  6. Pithan, C., Hennings, D., and Waser, R., Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC, Int. J. Appl. Ceram. Technol., 2005, vol. 2, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  7. Clabaugh, W.S., Swiggard, E.M., and Gilchrist, R., Preparation of Barium Titanyl Oxalate Tetrahydrate for Conversion to Barium Titanate of High Purity, J. Res. Natl. Bur. Stand., 1956, vol. 56, no. 5, pp. 289–291.

    CAS  Google Scholar 

  8. Vakhmenina, O.N., Bokman, G.Yu., Kharash, M.Sh., et al., RF Patent 2 224 718, 2004.

  9. Shut, V.N. and Kostomarov, S.V., Properties of Barium Titanate Powders in Relation to the Heat Treatment of the Barium Titanyl Oxalate Precursor, Inorg. Mater., 2012, vol. 48, no. 6, pp. 613–618.

    Google Scholar 

  10. Shut, V., Kostomarov, S., and Gavrilov, A., PTCR Barium Titanate Ceramics Obtained from Oxalate-Derived Powders with Varying Crystallinity, J. Mater. Sci., 2008, vol. 43, no. 15, pp. 5251–5257.

    Article  CAS  Google Scholar 

  11. Shut, V.N., Kostomarov, S.V., and Gavrilov, A.V., PTCR Ceramics Produced from Oxalate-Derived Barium Titanate, Inorg. Mater., 2008, vol. 44, no. 8, pp. 905–910.

    Article  CAS  Google Scholar 

  12. Shut, V.N. and Kostomarov, S.V., Semiconducting Ceramics Produced Using Nanocrystalline Barium Titanate Powder, Inorg. Mater., 2009, vol. 45, no. 12, pp. 1417–1422.

    Article  CAS  Google Scholar 

  13. Huybrechts, B., Ishizaki, K., and Takata, M., The Positive Temperature Coefficient of Resistivity in Barium Titanate, J. Mater. Sci., 1995, vol. 30, no. 10, pp. 2463–2474.

    Article  CAS  Google Scholar 

  14. Peng, C.J. and Lu, H.Y., Compensation Effect in Semiconducting Barium Titanate, J. Am. Ceram. Soc., 1988, vol. 71, no. 1, pp. 44–46.

    Article  Google Scholar 

  15. Urek, S. and Drofenik, M., PTCR Behavior of Highly Donor Doped BaTiO3, J. Eur. Ceram. Soc., 1999, vol. 19, nos. 6–7, pp. 913–916.

    Article  CAS  Google Scholar 

  16. Buscaglia, M.T., Viviani, M., Buscaglia, V., et al., Incorporation of Er3+ into BaTiO3, J. Am. Ceram. Soc., 2002, vol. 85, no. 6, pp. 1569–1575.

    Article  CAS  Google Scholar 

  17. Wang, S.F. and Dayton, G.O., Dielectric Properties of Fine-Grained Barium Titanate Based X7R Materials, J. Am. Ceram. Soc., 1999, vol. 82, no. 10, pp. 2677–2682.

    Article  CAS  Google Scholar 

  18. Yoon, S.H., Lee, J.-H., Kim, D.-Y., and Hwang, N.M., Effect of the Liquid-Phase Characteristic on the Microstructures and Dielectric Properties of Donor-(Niobium) and Acceptor-(Magnesium) Doped Barium Titanate, J. Am. Ceram. Soc., 2003, vol. 86, no. 1, pp. 88–92.

    Article  CAS  Google Scholar 

  19. Brzozowski, E. and Castro, M.S., Influence of Nb5+ and Sb3+ Dopants on the Defect Profile, PTCR Effect and GBBL Characteristics of BaTiO3 Ceramics, J. Eur. Ceram. Soc., 2004, vol. 24, no. 8, pp. 2499–2507.

    Article  CAS  Google Scholar 

  20. Mitic, V.V., Nikolic, Z.S., Pavlovic, V.B., et al., Influence of Rare-Earth Dopants on Barium Titanate Ceramics Microstructure and Corresponding Electrical Properties, J. Am. Ceram. Soc., 2010, vol. 93, no. 1, pp. 132–137.

    Article  CAS  Google Scholar 

  21. Desu, S.B. and Payne, D.A., Interfacial Segregation in Perovskites. II. Experimental Evidence, J. Am. Ceram. Soc., 1990, vol. 73, no. 11, pp. 3398–3406.

    Article  CAS  Google Scholar 

  22. Boltaks, B.I., Diffuziya i tochechnye defekty v poluprovodnikakh (Diffusion and Point Defects in Semiconductors), Leningrad: Nauka, 1972.

    Google Scholar 

  23. Liu, G., Wang, X., Lin, Y., et al., Growth Kinetics of Core-Shell-Structured Grains and Dielectric Constant in Rare-Earth-Doped BaTiO3 Ceramics, J. Appl. Phys., 2005, vol. 98, no. 4, pp. 044 105–044 111.

    Google Scholar 

  24. Glinchuk, M.D., Bykov, I.P., Kornienko, S.M., et al., Influence of Impurities on the Properties of Rare-Earth-Doped Barium-Titanate Ceramics, J. Mater. Chem., 2000, vol. 10, no. 4, pp. 941–947.

    Article  CAS  Google Scholar 

  25. Hari, N.S., Padmini, P., and Kutty, T.R.N., Complex Impedance Analyses of n-BaTiO3 Ceramics Showing Positive Temperature Coefficient of Resistance, J. Mater. Sci.: Mater. Electron., 1997, vol. 8, no. 1, pp. 15–22.

    Article  CAS  Google Scholar 

  26. Morrison, F.D., Sinclair, D.C., and West, A.R., Characterization of Lanthanum-Doped Barium Titanate Ceramics Using Impedance Spectroscopy, J. Am. Ceram. Soc., 2001, vol. 84, no. 3, pp. 531–538.

    Article  CAS  Google Scholar 

  27. Kirstein, K., Reichmann, K., Preis, W., and Mitsche, S., Effect of Commercial Anatase-TiO2 Raw Materials on the Electrical Characteristics of Ceramics with Positive Temperature Coefficient of Resistivity, J. Eur. Ceram. Soc., 2011, vol. 31, no. 13, pp. 2339–2349.

    Article  CAS  Google Scholar 

  28. Koschek, G. and Kubalek, E., Grain-Boundary Characteristics and Their Influence on the Electrical Resistance of Barium Titanate Ceramics, J. Am. Ceram. Soc., 1985, vol. 68, no. 11, pp. 582–586.

    Article  CAS  Google Scholar 

  29. Pavlov, A.N. and Raevskii, I.P., Varistor Effect in Semiconducting Ferroelectric Ceramics, Zh. Tekh. Fiz., 1997, vol. 67, no. 12, pp. 21–25.

    CAS  Google Scholar 

  30. Shut, V.N. and Gavrilov, A.V., Thermal Stresses in Layered Barium Titanate-Based Semiconductor Ceramics, Tech. Phys., 2008, vol. 53, no. 11, pp. 1508–1512.

    Article  CAS  Google Scholar 

  31. Roseman, R.D. and Mukherjee, N., PTCR Effect in BaTiO3: Structural Aspects and Grain Boundary Potentials, J. Electroceram., 2003, vol. 10, no. 2, pp. 117–135.

    Article  CAS  Google Scholar 

  32. Miki, T., Fujimoto, A., and Jida, S., An Evidence of Trap Activation for Positive Temperature Coefficient of Resistivity in BaTiO3 Ceramics with Substitutional Nb and Mn As Impurities, J. Appl. Phys., 1998, vol. 83, no. 3, pp. 1592–1603.

    Article  CAS  Google Scholar 

  33. Chiang, Y.-M. and Takagi, T., Grain-Boundary Chemistry of Barium Titanate and Strontium Titanate: I. High-Temperature Equilibrium Space Charge, J. Am. Ceram. Soc., 1990, vol. 73, no. 11, pp. 3278–3285.

    Article  CAS  Google Scholar 

  34. Yoon, S.H., Lee, K.H., and Kim, H., Effect of Acceptors on the Segregation of Donors in Niobium-Doped Barium Titanate Positive Temperature Coefficient Resistors, J. Am. Ceram. Soc., 2000, vol. 83, no. 10, pp. 2463–2472.

    Article  CAS  Google Scholar 

  35. V’yunov, O.I., Kovalenco, L.L., and Belous, A.G., The Effect of Isovalent Substitutions and Dopants of 3d-Metals on the Properties of Ferroelectrics-Semiconductors, Condens. Matter Phys., 2003, vol. 6, no. 2, pp. 213–220.

    Google Scholar 

  36. Gallego, M.M. and West, A.R., Effect of Annealing Treatments on Positive Temperature Coefficient of Resistance Properties of Barium Titanate Ceramics and a New Model for the Positive Temperature Coefficient of Resistance Effect, J. Appl. Phys., 2001, vol. 90, no. 1, pp. 394–403.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Shut.

Additional information

Original Russian Text © V.N. Shut, S.V. Kostomarov, V.L. Trublovsky, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 6, pp. 746–752.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shut, V.N., Kostomarov, S.V. & Trublovsky, V.L. Effect of the crystallinity of BaTiO3 powders prepared using the merker method on the properties of PTCR ceramics. Inorg Mater 48, 648–654 (2012). https://doi.org/10.1134/S0020168512060179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512060179

Keywords

Navigation