Skip to main content
Log in

Properties of barium titanate powders in relation to the heat treatment of the barium titanyl oxalate precursor

  • Published:
Inorganic Materials Aims and scope

Abstract

Barium titanate powders have been prepared by calcining barium titanyl oxalate precipitated by the Clabaugh and Merker processes, and their crystallization kinetics, morphology, and phase composition have been assessed. The results demonstrate that the Clabaugh process allows one to obtain powders with a low content of residual phases and tune the grain size (68–1935 nm) and crystal structure of barium titanate in wide ranges. The powders prepared through the Merker process have a narrower range of crystallite sizes (110–740 nm) and higher content of residual phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dawber, M., Rabe, K.M., and Scott, J.F., Physics of Thin-Film Ferroelectric Oxides, Rev. Mod. Phys., 2005, vol. 77, no. 4, pp. 1083–1130.

    Article  CAS  Google Scholar 

  2. Vijatović M.M., Bobić J.D., Stojanović, B.D., History and Challenges of Barium Titanate: Part II, Sci. Sintering, 2008, vol. 40, no. 3, pp. 235–244.

    Article  Google Scholar 

  3. Tagantsev, A.K., Sherman, V.O., Astafiev, K.F., et al., Ferroelectric Materials for Microwave Tunable Applications, J. Electroceram., 2003, vol. 11, nos. 1–2, pp. 5–66.

    Article  CAS  Google Scholar 

  4. Bao, P., Jackson, T.J., Wang, X., and Lancaster, M.J., Barium Strontium Titanate Thin Film Varactors for Room-Temperature Microwave Device Application, J. Phys. D: Appl. Phys., 2008, vol. 41, no. 6, pp. 063 001–063 021.

    Article  Google Scholar 

  5. Shut, V.N., Syrtsov, S.R., Trublovsky, V.L., et al., Compositionally Graded BST Ceramics Prepared by Tape Casting, Ferroelectrics, 2009, vol. 386, no. 1, pp. 125–132.

    Article  CAS  Google Scholar 

  6. Shut, V.N., Syrtsov, S.R., and Trublovsky, V.L., Ferroelectric Properties of Compositionally Graded BST Ceramics, Phase Transitions, 2010, vol. 83, no. 5, pp. 368–377.

    Article  CAS  Google Scholar 

  7. Yeo, K., Lancaster, M., Su, B., et al., High Frequency Thick Film BST Ferroelectric Phase Shifter, Integr. Ferroelectr., 2004, vol. 61, no. 1, pp. 65–70.

    Article  CAS  Google Scholar 

  8. Nenasheva, E.A., Kanareykin, A.D., Kartenko, N.F., et al., Ceramics Materials Based on (Ba,Sr)TiO3 Solid Solutions for Tunable Microwave Devices, J. Electroceram., 2004, vol. 13, nos. 1–3, pp. 235–238.

    Article  CAS  Google Scholar 

  9. Chen, Y.L. and Yang, S.F., PTCR Effect in Donor Doped Barium Titanate: Review of Compositions, Microstructures, Processing and Properties, Adv. Appl. Ceram., 2011, vol. 110, no. 5, pp. 257–269.

    Article  CAS  Google Scholar 

  10. Shut, V.N. and Kostomarov, S.V., Semiconducting Ceramics Produced Using Nanocrystalline Barium Titanate Powder, Inorg. Mater., 2009, vol. 45, no. 12, pp. 1417–1422.

    Article  CAS  Google Scholar 

  11. Shut, V.N., Kostomarov, S.V., and Gavrilov, A.V., PTCR Ceramics Produced from Oxalate-Derived Barium Titanate, Inorg. Mater., 2008, vol. 44, no. 8, pp. 905–910.

    Article  CAS  Google Scholar 

  12. Al-Allak, H.M., Anomalous Increase in the Resistivity of n-Doped BaTiO3-Based Ceramics with Pressure Observed at Room Temperature, J. Am. Ceram. Soc., 2011, vol. 94, no. 9, pp. 2757–2760.

    Article  CAS  Google Scholar 

  13. Pithan, C., Hennings, D., and Waser, R., Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC, Int. J. Appl. Ceram. Technol., 2005, vol. 2, no. 1, pp. 1–14.

    Article  CAS  Google Scholar 

  14. Valdez-Nava, Z., Guillemet-Fritsch, S., Tenailleau, Ch., et al., Colossal Dielectric Permittivity of BaTiO3-Based Nanocrystalline Ceramics Sintered by Spark Plasma Sintering, J. Electroceram., 2009, vol. 22, nos. 1–3, pp. 238–244.

    Article  CAS  Google Scholar 

  15. Gorelov, B.M., Kotenok, E.V., Makhno, S.N., et al., Structure and Optical and Dielectric Properties of Barium Titanate Nanoparticles Obtained by the Mechanochemical Method, Tech. Phys., 2011, vol. 56, no. 1, pp. 83–91.

    Article  CAS  Google Scholar 

  16. Clabaugh, W.S., Swiggard, E.M., and Gilchrist, R., Preparation of Barium Titanyl Oxalate Tetrahydrate for Conversion to Barium Titanate of High Purity, J. Res. Natl. Bur. Stand., 1956, vol. 56, no. 5, pp. 289–291.

    CAS  Google Scholar 

  17. Vakhmenina, O.N., Bokman, G.Yu., Kharash, M.Sh., et al., RF Patent 2 224 718, 2004.

  18. Shut, V., Kostomarov, S., and Gavrilov, A., PTCR Barium Titanate Ceramics Obtained from Oxalate-Derived Powders with Varying Crystallinity, J. Mater. Sci., 2008, vol. 43, no. 15, pp. 5251–5257.

    Article  CAS  Google Scholar 

  19. Bykov, A.I., Polotai, A.V., Ragulya, A.V., and Skorokhod, V.V., Synthesis and Sintering of Nanocrystalline Barium Titanate Powder under Nonisothermal Conditions: V. Nonisothermal Sintering of Barium Titanate Powders of Different Particle Sizes, Poroshk. Metall., 2000, nos. 7–8, pp. 88–98.

  20. Satio, Y., Contribution of Solid Electrochemical Techniques to High Temperature Oxidation Studies, Mater. High Temp., 2000, vol. 17, no. 4, pp. 477–481.

    Google Scholar 

  21. Yoo, H.-I. and Lee, C.-E., Two-Fold Diffusion Kinetics of Oxygen Re-Equilibration in Donor-Doped BaTiO3, J. Am. Ceram. Soc., 2005, vol. 88, no. 3, pp. 617–623.

    Article  CAS  Google Scholar 

  22. Desu, S.B. and Payne, D.A., Interfacial Segregation in Perovskites: 1. Theory, J. Am. Ceram. Soc., 1990, vol. 73, no. 11, pp. 3391–3397.

    Article  CAS  Google Scholar 

  23. Boltaks, B.I., Diffuziya i tochechnye defekty v poluprovodnikakh (Diffusion and Point Defects in Semiconductors), Leningrad: Nauka, 1972.

    Google Scholar 

  24. Venevtsev, Yu.N., Politova, E.D., and Ivanov, S.A., Segnetoelektriki i antisegnetoelektriki semeistva titanata bariya (Ferroelectrics and Antiferroelectrics of the Barium Titanate Family), Moscow: Khimiya, 1985.

    Google Scholar 

  25. Vasyl’kiv, O.O., Ragulya, A.V., and Skorokhod, V.V., Synthesis and Sintering of Nanocrystalline Barium Titanate Powder under Nonisothermal Conditions: II. Phase Analysis of the Decomposition Products of Barium Titanyl-Oxalate and the Synthesis of Barium Titanate, Powder Metall. Metal Ceram., 1997, vol. 36, nos. 5–6, pp. 277–282.

    Article  Google Scholar 

  26. Lee, T. and Aksay, I.A., Hierarchical Structure-Ferroelectricity Relationships of Barium Titanate Particles, Cryst. Growth Des., 2001, vol. 1, no. 5, pp. 401–419.

    Article  CAS  Google Scholar 

  27. Shut, V.N., Syrtsov, S.R., Trublovsky, V.L., and Strukov, B.A., Compositionally Graded Ceramics Based on Ba1 − x SrxTiO3 Solid Solutions, Inorg. Mater., 2011, vol. 47, no. 1, pp. 87–92.

    Article  CAS  Google Scholar 

  28. Medvedev, E.F., Technological Methods for Barium Titanate Synthesis (Review), Glass Ceram., 1998, vol. 55, nos. 9–10, pp. 311–313.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Shut.

Additional information

Original Russian Text © V.N. Shut, S.V. Kostomarov, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 6, pp. 706–711.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shut, V.N., Kostomarov, S.V. Properties of barium titanate powders in relation to the heat treatment of the barium titanyl oxalate precursor. Inorg Mater 48, 613–618 (2012). https://doi.org/10.1134/S0020168512060167

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512060167

Keywords

Navigation