Advertisement

Inorganic Materials

, Volume 48, Issue 6, pp 630–634 | Cite as

Synthesis, morphology, and optical properties of CuI microcrystals

  • G. P. Shevchenko
  • I. Yu. Piskunovich
  • V. A. Zhuravkov
  • Yu. V. Bokshits
Article

Abstract

We have studied the effect of synthesis conditions on the luminescence spectra of ultrafine CuI powders. The results demonstrate that synthesis conditions (the reductant of Cu2+, the anion of the copper(II) salt, initial solution concentrations, and the presence of a stabilizer) influence the size and shape of the forming CuI particles and, accordingly, their luminescence spectrum. The highest luminescence intensity near λmax ≅720 nm (λex ≅ 370 nm) is offered by regularly shaped tetrahedral particles 1.1–1.2 μm in average size.

Keywords

Luminescence Spectrum Sodium Borohydride Potassium Iodide Copper Sulfate Copper Nitrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gogolin, O., Mshvelidze, G., Tsitsishvili, E., et al., Properties of CuI Nanocrystallites Embedded in a Glass Matrix: From Quantum Confinement to Bulk-Band Parameters, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 62, no. 19, pp. 13 053–13 056.CrossRefGoogle Scholar
  2. 2.
    Sirimanne, P.M., Soga, T., and Jimbo, T., Identification of Various Luminescence Centers in CuI Films by Cathodoluminescence Technique, J. Lumin., 2003, vol. 105, pp. 105–109.CrossRefGoogle Scholar
  3. 3.
    Malashkevich, G.E., Shevchenko, G.P., Bokshits, Yu.V., and Frolova, E.V., BR Patent 10 742, 2008.Google Scholar
  4. 4.
    Handbuch der präparativen anorganischen Chemie in drei Bänden, von Brauer, G., Ed., Stuttgart: Ferdinand Enke, 1978, 3rd ed., vol. 4.Google Scholar
  5. 5.
    Ming Yang, Jin-Zhong Xu, Shu Xu, et al., Preparation of Porous Spherical CuI Nanoparticles, Inorg. Chem. Commun., 2004, no. 7, pp. 628–630.Google Scholar
  6. 6.
    Bernard, C.H. and Fan, W.Y., Facile Synthesis of Single-Crystalline γ-CuI Nanotetrahedrons and Their Induced Transformation to Tetrahedral CuO Nanocages, J. Phys. Chem. C, 2007, no. 111, pp. 9166–9171.Google Scholar
  7. 7.
    Kumar, P.S., Saraswathi, Y.L., and Sunandana, C.S., Phase Transitions in Mechano-Chemically Synthesized CuI Nanocrystals, Mater. Phys. Mech., 2001, vol. 4, pp. 71–75.Google Scholar
  8. 8.
    Wagner, J.B. and Wagner, C., Electrical Conductivity Measurements on Cuprous Halides, J. Chem. Phys., 1957, vol. 26, no. 6, pp. 1597–1601.CrossRefGoogle Scholar
  9. 9.
    Popolitov, V.I. and Lobachev, A.N., Chemical Synthesis and Properties of Copper Iodide Single Crystals, Izv. Akad. Nauk SSSR, Neorg. Mater., 1973, vol. 9, no. 6, pp. 1062–1063.Google Scholar
  10. 10.
    Ripan, R. and Ceteanu, I., Chimia metalelor, Bucharest: Editura Didacticǎ si Pedagogicǎ, 1969, vol. 2.Google Scholar
  11. 11.
    Xu, D.Y., Chen, X. Jiao, and Ba, L., PEG-Assisted Fabrication of Single-Crystalline CuI Nanosheets: A General Route to Two-Dimensional Nanostructured Materials, J. Phys. Chem. C, 2007, vol. 111, no. 1, pp. 6–9.CrossRefGoogle Scholar
  12. 12.
    Voyutskii, S.S. and Panich, R.M., Praktikum po kolloidnoi khimii i elektronnoi mikroskopii (A Practical Course in Colloid Chemistry and Electron Microscopy), Moscow: Khimiya, 1974, pp. 196–197.Google Scholar
  13. 13.
    Powder Diffraction File, Swarthmore: JCPDS-Int. Centre for Diffraction Data, 1989, nos. 6-246, 35-1091, 45-937.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • G. P. Shevchenko
    • 1
  • I. Yu. Piskunovich
    • 1
  • V. A. Zhuravkov
    • 1
  • Yu. V. Bokshits
    • 1
  1. 1.Research Institute of Physicochemical ProblemsBelarussian State UniversityMinskBelarus

Personalised recommendations