Skip to main content
Log in

Embedded atom method potentials for alkali metals

  • Published:
Inorganic Materials Aims and scope

Abstract

The embedded atom method potentials calculated earlier for liquid lithium, sodium, potassium, rubidium, and cesium and presented in the form of tables are corrected and represented in a unified analytical form. When the parameters of the potential are adjusted using the known temperature dependence of the melt density along the melting line of the metal, the actual energy rises more rapidly than the simulated energy as the critical point is approached. The likely reason for the discrepancy is the thermal contribution of the electron gas to the energy of the metal. The discrepancy between the simulated energy and the actual energy of the metal at high temperatures can be considerably reduced by taking into consideration the thermal excitation energy of the electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belashchenko, D.K., The Use of the Embedded Atom Model for Liquid Metals: Liquid Potassium, Russ. J. Phys. Chem. A, 2009, vol. 83, no. 2, pp. 260–264.

    Article  CAS  Google Scholar 

  2. Belashchenko, D.K., Embedded Atom Model for Liquid Metals: Liquid Iron, Russ. J. Phys. Chem. A, 2006, vol. 80, no. 5, pp. 758–768.

    Article  CAS  Google Scholar 

  3. Belashchenko, D.K., Embedded Atom Model Application to Liquid Metals: Liquid Rubidium, Russ. J. Phys. Chem. A, 2006, vol. 80, no. 10, pp. 1567–1577.

    Article  CAS  Google Scholar 

  4. Belashchenko, D.K., Application of the Embedded Atom Model to Liquid Metals: Liquid Sodium, High Temp., 2009, vol. 47, no. 4, pp. 494–507.

    Article  CAS  Google Scholar 

  5. Belashchenko, D.K. and Nikitin, N.Yu., The Embedded Atom Model of Liquid Cesium, Russ. J. Phys. Chem. A, 2008, vol. 82, no. 8, pp. 1283–1289.

    Article  CAS  Google Scholar 

  6. Belashchenko, D.K. and Ostrovskii, O.I., Application of the Embedded Atom Model to Liquid Metals: Liquid Lithium, High Temp., 2009, vol. 47, no. 2, pp. 211–218.

    Article  CAS  Google Scholar 

  7. Finnis, M.W. and Sinclair, J.E., A Simple Empirical N-Body Potential for Transition Metals, Philos. Mag. A, 1984, vol. 50, pp. 45–55.

    Article  CAS  Google Scholar 

  8. Daw, M.S. and Baskes, M.I., Embedded-Atom Method: Derivation and Application To Impurities, Surfaces, and Other Defects in Metals, Phys. Rev. B: Condens. Matter Mater. Phys., 1984, vol. 29, no. 12, pp. 6443–6453.

    Article  CAS  Google Scholar 

  9. Belashchenko, D.K., Optimal Algorithm for Constructing the Embedded Atom Method Potential for Liquid Metals, Inorg. Mater., 2011, vol. 47, no. 6, pp. 654–659.

    Article  CAS  Google Scholar 

  10. Schommers, W., A Pair Potential for Liquid Rubidium from the Pair Correlation Function, Phys. Lett. A, 1973, vol. 43, pp. 157–158.

    Article  CAS  Google Scholar 

  11. Belashchenko, D.K., Molecular-Dynamics Simulation of the High-Pressure Properties of Rubidium, High. Temp., 2010, vol. 48, no. 5, pp. 646–658.

    Article  CAS  Google Scholar 

  12. Belashchenko, D.K. and Smirnova, D.E., Modeling the Molecular Dynamics of Liquid Metals at High Pressures: Liquid Potassium, Russ. J. Phys. Chem. A, 2011, vol. 85, no. 11, pp. 1908–1916.

    Article  CAS  Google Scholar 

  13. Bystrov, P.I., Kagan, D.N., Krechetova, G.A., and Shpil’rain, E.E., Zhidkometallicheskie teplonositeli teplovykh trub i energeticheskikh ustanovok (Liquid-Metal Heat Transfer Fluids for Heat Pipes and Power Plants), Moscow: Nauka, 1988.

    Google Scholar 

  14. Waseda, Y., The Structure of Non-Crystalline Materials. Liquids and Amorphous Solids, New York: McGraw-Hill, 1980.

    Google Scholar 

  15. http://res.tagen.tohoku.ac.jp/~waseda/scm/AXS/index.html

  16. Salmon, P.S., Petri, I., de Jong, P.H.K., et al., Structure of Liquid Lithium, J. Phys.: Condens. Matter, 2004, vol. 16, pp. 195–222.

    Article  CAS  Google Scholar 

  17. Animalu, A., Intermediate Quantum Theory of Crystalline Solids, Englewood Cliffs: Prentice-Hall, 1977.

    Google Scholar 

  18. http://chemfiles.narod.ru/element/k/k.html. Potassium: Chemical Elements: Chemistry-files.ru

  19. Hosokawa, S., Pilgrim, W.-C., Hensel, F., et al., X-Ray Diffraction Measurements on Expanded Liquid Rb, J. Non-Cryst. Solids, 1999, vols. 250–252, pp. 159–162.

    Article  Google Scholar 

  20. Winter, R., Hensel, F., Bodensteiner, T., and Glaser, W., The Static Structure Factor of Cesium over the Whole Liquid Range up to the Critical Point, Ber. Bunsen-Ges. Phys. Chem., 1987, vol. 91, pp. 1327–1330.

    CAS  Google Scholar 

  21. Belashchenko, D.K., Smirnova, D.E., and Ostrovski, O.I., Molecular-Dynamic Simulation of the Thermophysical Properties of Liquid Uranium, High Temp., 2010, vol. 48, no. 3, pp. 363–375.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Belashchenko.

Additional information

Original Russian Text © D.K. Belashchenko, 2012, published in Neorganicheskie Materialy, 2012, Vol. 48, No. 1, pp. 87–94.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belashchenko, D.K. Embedded atom method potentials for alkali metals. Inorg Mater 48, 79–86 (2012). https://doi.org/10.1134/S0020168512010037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168512010037

Keywords

Navigation