Skip to main content
Log in

Transmission electron microscopic study of multiwalled carbon nanotubes

  • Published:
Inorganic Materials Aims and scope

Abstract

Multiwalled carbon nanotubes have been studied by transmission electron microscopy, selectedarea electron diffraction, and transmission electron energy loss spectroscopy (EELS). The results demonstrate that the walls of carbon nanotubes consist of graphite-like layers with an increased interlayer spacing compared to graphite. The local density distribution in the CNTs has been evaluated from EELS scans over the nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srivastava, S.K., Vankar, V.D., and Kumar, V., Effect of Hydrogen Plasma Treatment on the Growth and Microstructures of Multiwalled Carbon Nanotubes, Nano-Micro Lett., 2010, vol. 2, no. 1, pp. 42–48.

    Article  CAS  Google Scholar 

  2. García-Gutiérrez, M.C., Nogales, A., Hernaández, J.J., et al., X-Ray Scattering Applied to the Analysis of Carbon Nanotubes, Polymers and Nanocomposites, Opt. Pura Apl., 2007, vol. 40, no. 2, pp. 195–205.

    Google Scholar 

  3. Fink, J., Transmission Electron Energy-Loss Spectroscopy, in Unoccupied Electronic States, Berlin: Springer, 1992, pp. 203–243.

    Google Scholar 

  4. Brzhezinskaya, M.M. and Baitinger, E.M., Trend in Nanotubes Research (Gebundene Ausgabe), Nova Science, 2006, pp. 217–253.

  5. Kleiman, J.I., in Carbyne and Carbynoid Structures, Heimann, R.B., Ed., Dordrecht: Kluwer, 1999, pp. 395–407.

    Google Scholar 

  6. Brandt, N.B. and Kul’bachinskii, V.A., Kvazichastitsy v fizike kondensirovannogo sostoyaniya (Quasi-Particles in the Physics of Condensed Matter), Moscow: Fizmatlit, 2005.

    Google Scholar 

  7. Baitinger, E.M., Plasmon Dispersion in Graphite, Fiz. Tverd. Tela (S.-Peterburg), 2006, vol. 48, no. 8, pp. 1380–1384.

    Google Scholar 

  8. Egerton, R.F., Electron Energy-Loss Spectroscopy, Rep. Prog. Phys., 2009, vol. 72, paper 016 502.

  9. Tkachev, A.G. and Zolotukhin, I.V., Apparatura i metody sinteza tverdotel’nykh nanostruktur (Apparatus and Techniques for the Synthesis of Solid Nanostructures), Moscow: Mashinostroenie, 2007.

    Google Scholar 

  10. Vekesser, N.A. and Baitinger, E.M., Relationship between the Plasmon Energy and Density in Condensed Carbon, Materialy I mezhdunarodnoi nauchnoi konferentsii “Nanostrukturnye materialy-2008 (NANO-2008)”(Proc. I Int. Sci. Conf. Nanostructured Materials-2008, NANO-2008), Minsk: Belorusskaya Nauka, 2008, p. 402.

    Google Scholar 

  11. Waidmann, S., Elektronische Eigenschaften von Diamant und Diamantartigen Kohlenstoffen, Dissertation, Dresden, 2001.

  12. Stoeckli, T., Bonard, J., Chatelain, A., et al., Plasmon Excitations in Graphitic Carbon Spheres, Phys. Rev. B: Condens. Matter Mater. Phys., 1998, vol. 57, no. 4, pp. 15 999–15 612.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Vekesser.

Additional information

Original Russian Text © E.M. Baitinger, N.A. Vekesser, I.N. Kovalev, O.V. Slobodchikov, V.V. Viktorov, 2011, published in Neorganicheskie Materialy, 2011, Vol. 47, No. 6, pp. 689–693.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baitinger, E.M., Vekesser, N.A., Kovalev, I.N. et al. Transmission electron microscopic study of multiwalled carbon nanotubes. Inorg Mater 47, 614–617 (2011). https://doi.org/10.1134/S0020168511060033

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168511060033

Keywords

Navigation