Graphene: A novel carbon nanomaterial

Abstract

This review analyzes what the term graphene means today, and examines graphene preparation and identification methods and its chemical properties. The applications of this novel carbon nanomaterial are briefly discussed.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Novoselov, K.S., Geim, A.K., Morozov, S.V., et al., Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, vol. 306, no. 5696, pp. 666–669.

    CAS  Article  Google Scholar 

  2. 2.

    Geim, A.K. and Novoselov, K.S., The Rise of Graphene, Nat. Mater., 2007, vol. 6, no. 3, pp. 183–191.

    CAS  Article  Google Scholar 

  3. 3.

    Weng, L., Zhang, L., Chen, Y.P., et al., Atomic Force Microscope Local Oxidation Nanolithography of Graphene, Appl. Phys. Lett., 2008, vol. 93, no. 9, paper 093107.

  4. 4.

    Bunch, J.S., Zande, V.D., Verbridge, A.M., et al., Electromechanical Resonators from Graphene Sheets, Science, 2007, vol. 315, no. 5811, pp. 490–493.

    CAS  Article  Google Scholar 

  5. 5.

    Wu, J., Agrawal, M., Becerril, H.A., et al., Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes, ACS Nano, 2010, vol. 4, no. 1, pp. 43–48.

    CAS  Article  Google Scholar 

  6. 6.

    Chung, D.D.L., Review Graphite, J. Mater. Sci., 2002, vol. 37, no. 8, pp. 1475–1489.

    CAS  Article  Google Scholar 

  7. 7.

    Stoller, M.D., Park, S., Zhu, Y., et al., Graphene-Based Ultracapacitors, Nano Lett., 2008, vol. 8, no. 10, pp. 3498–3502.

    CAS  Article  Google Scholar 

  8. 8.

    Balandin, A.A., Ghosh, S., Bao, W., et al., Extremely High Thermal Conductivity of Graphene: Experimental Study, Nano Lett., 2008, vol. 8, no. 3, pp. 902–907.

    CAS  Article  Google Scholar 

  9. 9.

    Novoselov, K.S., Jiang, D., Schedin, F., et al., Two-Dimensional Atomic Crystals, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 30, paper 10451.

  10. 10.

    Hernandez, Y., High-Yield Production of Graphene by Liquid-Phase Exfoliation of Graphite, Nat. Nanotechnol., 2008, vol. 3, no. 9, pp. 563–568.

    CAS  Article  Google Scholar 

  11. 11.

    Brodie, B.C., Sur le poids atomique du graphite, Ann. Chim. Phys., 1860, vol. 59, pp. 466–472.

    Google Scholar 

  12. 12.

    Staudenmaier, L., Verfahren zur Darstellung der Graphitsaure, Ber. Deut. Chem. Ges., 1898, vol. 31, pp. 1481–1499.

    CAS  Article  Google Scholar 

  13. 13.

    Hummers, W.S. and Offeman, R.E., Preparation of Graphitic Oxide, J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339.

    CAS  Article  Google Scholar 

  14. 14.

    Hontoria-Lycas, C., Lopez-Peinado, A.J., Lopez-Gonzalez, J. De D., et al., Study of Oxygen-Containing Groups in Series of Graphite Oxides: Physical and Chemical Characterization, Carbon, 1995, vol. 33, no. 11, p. 1585.

    Article  Google Scholar 

  15. 15.

    Szaro, T., Berkesi, O., Forgo, P., et al., Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, Chem. Mater., 2006, vol. 18, no. 11, pp. 2740–2749.

    Article  Google Scholar 

  16. 16.

    Park, S., Lee, K.S., Bozoklu, G., et al., Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking, ACS Nano, 2008, vol. 2, no. 3, pp. 572–578.

    CAS  Article  Google Scholar 

  17. 17.

    Stankovich, S., Piner, R.D., Chen, X., et al., Stable Aqueous Dispersions of Graphitic Nanoplatelets via the Reduction of Exfoliated Graphite Oxide in the Presence of Poly(sodium 4-styrenesulfonate), J. Mater. Chem., 2006, vol. 16, no. 2, pp. 155–158.

    CAS  Article  Google Scholar 

  18. 18.

    Stankovich, S., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Synthesis and Exfoliation of Isocyanate-Treated Graphene Oxide Nanoplatelets, Carbon, 2006, vol. 44, no. 15, pp. 3342–3347.

    CAS  Article  Google Scholar 

  19. 19.

    Paredes, J.I., Villar-Rodil, S., Martinez-Alonso, A., Tascon, J.M.D., Graphene Oxide Dispersions in Organic Solvents, Langmuir, 2008, vol. 24, no. 19, pp. 10560–10564.

    CAS  Article  Google Scholar 

  20. 20.

    Stankovich, S., Dikin, D.A., Piner, R.D., et al., Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide, Carbon, 2007, vol. 45, no. 7, pp. 1558–1565.

    CAS  Article  Google Scholar 

  21. 21.

    Lomeda, J.R., Doyle, C.D., Kosynkin, D.V., et al., Diazonium Functionalization of Surfactant-Wrapped Chemically Converted Graphene Sheets, J. Am. Chem. Soc., 2008, vol. 130, no. 48, pp. 16201–16206.

    CAS  Article  Google Scholar 

  22. 22.

    Tung, V.C., Allen, M.J., Yang, Y., Kaner, R.B., High-Throughput Solution Processing of Large-Scale Graphene, Nat. Nanotechnol., 2008, vol. 4, no. 1, pp. 25–29.

    Article  Google Scholar 

  23. 23.

    Stankovich, S., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Graphene-Based Composite Materials, Nature, 2006, vol. 442, no. 7100, pp. 282–286.

    CAS  Article  Google Scholar 

  24. 24.

    Wang, G., Yang, G., Park, J., et al., Facile Synthesis and Characterization of Graphene Nanosheets, J. Phys. Chem. C, 2008, vol. 112, no. 22, pp. 8192–8195.

    CAS  Article  Google Scholar 

  25. 25.

    Boehm, H.P., Eckel, M., and Scholz, W., Uber den Bildungsmechanismus des Graphitoxids, Anorg. Allg. Chem., 1967, vol. 353, pp. 236–242.

    CAS  Article  Google Scholar 

  26. 26.

    Schniepp, H.C., McAllister, M.J., Sai, H., et al., Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide, J. Phys. Chem. B, 2006, vol. 110, no. 17, pp. 8535–8539.

    CAS  Article  Google Scholar 

  27. 27.

    McAllister, M.J., Li, J.-L., Adamson, D.H., et al., Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite, Chem. Mater., 2007, vol. 19, no. 18, pp. 4396–4404.

    CAS  Article  Google Scholar 

  28. 28.

    Li, X., Zhang, G., Bai, X., et al., Highly Conducting Graphene Sheets and Langmuir-Blodgett Films, Nat. Nanotechnol., 2008, vol. 3, no. 9, pp. 538–542.

    CAS  Article  Google Scholar 

  29. 29.

    Liu, N., Luo, F., Wu, H.X., et al., One-Step Ionic-Liquid-Assisted Electrochemical Synthesis of Ionic-Liquid-Functionalized Graphene Sheets Directly from Graphite, Adv. Funct. Mater., 2008, vol. 18, no. 10, pp. 1518–1525.

    CAS  Article  Google Scholar 

  30. 30.

    Eizenberg, M. and Blakely, J.M., Carbon Monolayer Phase Condensation on Ni(111), Surf. Sci., 1979, vol. 82, no. 1, pp. 228–236.

    CAS  Article  Google Scholar 

  31. 31.

    Aizawa, T., Souda, R., Otani, S., et al., Anomalous Bond of Monolayer Graphite on Transition-Metal Carbide Surfaces, Phys. Rev. Lett., 1990, vol. 64, no. 7, pp. 768–771.

    CAS  Article  Google Scholar 

  32. 32.

    Tontegode, A.Y., Carbon on Transition Metal Surfaces, Prog. Surf. Sci., 1991, vol. 38, nos. 3–4, pp. 201–429.

    CAS  Article  Google Scholar 

  33. 33.

    Gall, N.R., Rut’kov, E.V., and Tontegoge, A.Y., Two Dimensional Graphite Films on Metals and Their Intercalation, Int. J. Mod. Phys. B, 1997, vol. 11, no. 16, pp. 1865–1911.

    CAS  Article  Google Scholar 

  34. 34.

    Kim, K.S., Zhao, Y., Jang, H., et al., Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes, Nature, 2009, vol. 457, no. 7230, pp. 706–710.

    CAS  Article  Google Scholar 

  35. 35.

    Reina, A., Jia, X., Ho, J., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett., 2009, vol. 9, no. 1, pp. 30–35.

    CAS  Article  Google Scholar 

  36. 36.

    Lee, Y., Bae, S., Jang, H., et al., Wafer-Scale Synthesis and Transfer of Graphene Films, Nano Lett., 2010, vol. 10, no. 2, pp. 490–493.

    CAS  Article  Google Scholar 

  37. 37.

    Sutter, P.W., Flege, J.I., and Sutter, E.A., Epitaxial Graphene on Ruthenium, Nat. Mater., 2008, vol. 7, no. 5, pp. 406–411.

    CAS  Article  Google Scholar 

  38. 38.

    Wang, J.J., Zhu, M.Y., Outlaw, R.A., et al., Free-Standing Subnanometer Graphite Sheets, Appl. Phys. Lett., 2004, vol. 85, no. 7, pp. 1265–1267.

    CAS  Article  Google Scholar 

  39. 39.

    Dato, A., Radmilovic, V., Lee, Z., et al., Substrate-Free Gas-Phase Synthesis of Graphene Sheets, Nano Lett., 2008, vol. 8, no. 7, pp. 2012–2016.

    CAS  Article  Google Scholar 

  40. 40.

    Campos-Delgado, J., Romo-Herrera, M., Jia, X., et al., Bulk Production of a New Form of sp 2 Carbon: Crystalline Graphene Nanoribbons, Nano Lett., 2008, vol. 8, no. 9, pp. 2773–2778.

    CAS  Article  Google Scholar 

  41. 41.

    Rollings, E., Gweon, G.H., Zhou, S.Y., et al., Synthesis and Characterization of Atomically Thin Graphite Films on a Silicon Carbide Substrate, J. Phys. Chem. Solids, 2006, vol. 67, nos. 9–10, pp. 2172–2177.

    CAS  Article  Google Scholar 

  42. 42.

    Hass, J., Feng, R., Li, T., et al., Highly Ordered Graphene for Two Dimensional Electronics, Appl. Phys. Lett., 2006, vol. 89, no. 4, paper 143106.

  43. 43.

    Berger, C., Song, Z., Li, X., et al., Electronic Confinement and Coherence in Patterned Epitaxial Graphene, Science, 2006, vol. 312, no. 5777, pp. 1191–1196.

    CAS  Article  Google Scholar 

  44. 44.

    Hass, J., Varchon, F., Millan-Otoya, J.E., et al., Why Multilayer Graphene on 4H-SiC (0001) Behaves Like a Single Sheet of Graphene, Phys. Rev. Lett., 2008, vol. 100, no. 12, paper 125504.

  45. 45.

    Si, Y. and Samulski, E.T., Synthesis of Water Soluble Graphene, Nano Lett., 2008, vol. 8, no. 6, pp. 1679–1682.

    CAS  Article  Google Scholar 

  46. 46.

    Williams, G., Serger, B., and Kamat, P.V., TiO2-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide, ACS Nano, 2008, vol. 2, no. 8, pp. 1487–1491.

    CAS  Article  Google Scholar 

  47. 47.

    Li, D., Muller, M.B., Gilje, S., et al., Processable Aqueous Dispersions of Graphene Nanosheets, Nat. Nanotechnol., 2008, vol. 3, no. 2, pp. 101–105.

    CAS  Article  Google Scholar 

  48. 48.

    Xu, Y., Bai, H., Lu, G., et al., Flexible Graphene Films via the Filtration of Water-Soluble Noncovalent Functionalized Graphene Sheets, J. Am. Chem. Soc., 2008, vol. 130, no. 18, pp. 5856–5857.

    CAS  Article  Google Scholar 

  49. 49.

    Park, S., An, J.H., Piner, R.D., et al., Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets, Chem. Mater., 2008, vol. 20, no. 21, pp. 6592–6594.

    CAS  Article  Google Scholar 

  50. 50.

    Niyogi, S., Bekyarova, E., Itkis, M.E., et al., Solution Properties of Graphite and Graphene, J. Am. Chem. Soc., 2006, vol. 128, no. 24, pp. 7720–7721.

    CAS  Article  Google Scholar 

  51. 51.

    Muszynski, R., Seger, B., and Kamat, P.V., Decorating Graphene Sheets with Gold Nanoparticles, J. Phys. Chem. C, 2008, vol. 112, no. 14, pp. 5263–5266.

    CAS  Article  Google Scholar 

  52. 52.

    Ramanathan, T., Abdala, A.A., Stankovich, S., et al., Functionalized Graphene Sheets for Polymer Nanocomposites, Nat. Nanotechnol., 2008, vol. 3, no. 6, pp. 327–331.

    CAS  Article  Google Scholar 

  53. 53.

    Valles, C., Drummond, C., Saadaoui, H., et al., Solutions of Negatively Charged Graphene Sheets and Ribbons, J. Am. Chem. Soc., 2008, vol. 130, no. 47, pp. 15802–15804.

    CAS  Article  Google Scholar 

  54. 54.

    Li, X., Wang, X., Zhang, L., Lee, S., et al., Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors, Science, 2008, vol. 319, no. 5867, pp. 1229–1232.

    CAS  Article  Google Scholar 

  55. 55.

    Hao, R., Qian, W., Zhang, L., et al., Aqueous Dispersions of TCNQ-Anion-Stabilized Graphene Sheets, Chem. Commun., 2008, vol. 48, pp. 6576–6578.

    Article  Google Scholar 

  56. 56.

    Worsley, K.A., Ramesh, P., Mandal, S.K., et al., Soluble Graphene Derived from Graphite Fluoride, Chem. Phys. Lett., 2007, vol. 445, nos. 1–3, pp. 51–56.

    CAS  Article  Google Scholar 

  57. 57.

    Blake, P., Bricombe, P.D., Nair, R.R., et al., Graphene-Based Liquid Crystal Device, Nano Lett., 2008, vol. 8, no. 6, pp. 1704–1708.

    Article  Google Scholar 

  58. 58.

    Choucair, M., Thordarson, P., and Stride, J.A., Gram-Scale Production of Graphene Based on Solvothermal Synthesis and Sonication, Nat. Nanotechnol., 2009, vol. 4, no. 1, pp. 30–33.

    CAS  Article  Google Scholar 

  59. 59.

    Ferrari, A.C., Raman Spectroscopy of Graphene and Graphite: Disorder, Electron-Photon Coupling, Doping and Nonadiabatic Effects, Solid State Commun., 2007, vol. 143, nos. 1–2, pp. 47–57.

    CAS  Article  Google Scholar 

  60. 60.

    Ferrari, A.C., Meyer, J.C., Scardasi, V., et al., Raman Spectra of Graphene and Graphene Layers, Phys. Rev. Lett., 2006, vol. 97, no. 18, paper 187 401.

  61. 61.

    Chen, C.C., Bao, W., Theiss, J., et al., Raman Spectroscopy of Ripple Formation in Suspended Graphene, Nano Lett., 2009, vol. 9, no. 12, pp. 4172–4176.

    CAS  Article  Google Scholar 

  62. 62.

    Obraztsova, E.A., Osadchy, A.V., Obraztsova, E.D., et al., Statistical Analysis of Atomic Force Microscopy and Raman Spectroscopy Data for Estimation of Graphene Layer Numbers, Phys. Status Solidi B, 2008, vol. 245, no. 10, pp. 2055–2059.

    CAS  Article  Google Scholar 

  63. 63.

    Stolyarova, E., Rim, K.T., Ryu, S., et al., High Resolution Scanning Tunneling Mesoscopic Imaging of Graphene Sheets on an Insulating Surface, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, no. 22, pp. 9209–9212.

    CAS  Article  Google Scholar 

  64. 64.

    Yang, H., Mayne, A.J., Boucherit, M., et al., Quantum Interference Channeling at Graphene Edges, Nano Lett., 2010, vol. 10, no. 3, pp. 943–947.

    CAS  Article  Google Scholar 

  65. 65.

    Kidin, K.N., Ozbas, B., Schniepp, H.S., et al., Raman Spectra of Graphene Oxide and Functionalized Graphene Sheets, Nano Lett., 2008, vol. 8, no. 1, pp. 36–41.

    Article  Google Scholar 

  66. 66.

    Choi, J., Lee, H., Kim, K., et al., Chemical Doping of Epitaxial Graphene by Organic Free Radicals, J. Phys. Chem. Lett., 2010, vol. 1, no. 2, pp. 505–509.

    CAS  Article  Google Scholar 

  67. 67.

    Margine, E.R., Bocquet, M.-L., and Blase-, X., Thermal Stability of Graphene and Nanotube Covalent Functionalization, Nano Lett., 2008, vol. 8, no. 10, pp. 3315–3319.

    CAS  Article  Google Scholar 

  68. 68.

    Schedin, F., Geim, A.K., Morozov, S.V., et al., Detection of Individual Gas Molecules Adsorbed on Graphene, Nat. Mater., 2007, vol. 6, no. 9, pp. 652–655.

    CAS  Article  Google Scholar 

  69. 69.

    Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., et al., Control of Graphene’s Properties by Reversible Hydrogenation: Evidence for Graphane, Science, 2009, vol. 323, no. 5914, pp. 610–613.

    CAS  Article  Google Scholar 

  70. 70.

    Hernandez, Y., Lotya, M., Rickard, D., et al., Measurement of Multicomponent Solubility Parameters for Graphene Facilitates Solvent Discovery, Langmuir, 2010, vol. 26, no. 5, pp. 3208–3213.

    CAS  Article  Google Scholar 

  71. 71.

    Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., et al., 100-GHz Transistors from Wafer-Scale Epitaxial Graphene, Science, 2010, vol. 327, no. 5966, p. 662.

    CAS  Article  Google Scholar 

  72. 72.

    Vivekchand, S.R.C., Rout, C.S., Subrahmanyam, K.S., et al., Graphene-Based Electrochemical Supercapacitors, J. Chem. Sci., 2008, vol. 120, no. 1, pp. 9–13.

    CAS  Article  Google Scholar 

  73. 73.

    Matyba, P., Yamaguchi, H., Eda, G., et al., Graphene and Mobile Ions: The Key to All-Plastic, Solution-Processed Light-Emitting Devices, ACS Nano, 2010, vol. 4, no. 2, pp. 637–642.

    CAS  Article  Google Scholar 

  74. 74.

    Titov, A.V. and Pearson, R., Sandwiched Graphene-Membrane Superstructures, ACS Nano, 2010, vol. 4, no. 1, pp. 229–234.

    CAS  Article  Google Scholar 

  75. 75.

    Zhang, K., Zhang, L., Zhao, X.S., et al., Graphene/Poly-aniline Nanofiber Composites As Supercapacitor Electrodes, Chem. Mater., 2010, vol. 22, no. 4, pp. 1392–1401.

    CAS  Article  Google Scholar 

  76. 76.

    Yu, D. and Dai, L., Self-Assembled Graphene/Carbon Nanotube Hybrid Films for Supercapacitors, J. Phys. Chem. Lett., 2010, vol. 1, no. 2, pp. 467–470.

    CAS  Article  Google Scholar 

  77. 77.

    Kamat, P.V., Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support, J. Phys. Chem. Lett., 2010, vol. 1, no. 2, pp. 520–527.

    CAS  Article  Google Scholar 

  78. 78.

    Guo, S., Dong, S., and Wang, E., Three-Dimensional Pt-on-Pd Bimetallic Nanodendrites Supported on Graphene Nanosheet: Facile Synthesis and Used As an Advanced Nanoelectrocatalyst for Methanol Oxidation, ACS Nano, 2010, vol. 4, no. 1, pp. 547–555.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. V. Tkachev.

Additional information

Original Russian Text © S.V. Tkachev, E.Yu. Buslaeva, S.P. Gubin, 2011, published in Neorganicheskie Materialy, 2011, Vol. 47, No. 1, pp. 5–14.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tkachev, S.V., Buslaeva, E.Y. & Gubin, S.P. Graphene: A novel carbon nanomaterial. Inorg Mater 47, 1–10 (2011). https://doi.org/10.1134/S0020168511010134

Download citation

Keywords

  • Graphene Oxide
  • Graphene Sheet
  • Graphite Oxide
  • DMAC
  • Membered Ring