Skip to main content
Log in

Computer simulation of AgI nanostructures in single-wall carbon nanotubes

  • Published:
Inorganic Materials Aims and scope

Abstract

Nanostructures resulting from the incorporation of silver iodide into single-wall carbon nanotubes (SWCNTs) of various diameters have been studied using molecular dynamics simulation. The results indicate the formation of single-wall silver iodide nanotubes when the SWCNT diameter is within 14.2 Å, whereas thicker carbon tubes contain, in addition, an axial “filament” of silver and iodide ions. AgI nanotubes in SWCNTs typically have a hexagonal structure (with the ions in trigonal coordination).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima, S., Helical Microtubules of Graphitic Carbon, Nature, 1991, vol. 354, no. 6348, pp. 56–58.

    Article  CAS  Google Scholar 

  2. Dresselhaus, M.S., Dresselhaus, G., and Saito, R., Physics of Carbon Nanotubes, Carbon, 1995, vol. 33, no. 7, pp. 883–891.

    Article  CAS  Google Scholar 

  3. Sloan, J., Kirkland, A.I., Hutchison, J.L., and Green, M.L.H., Integral Atomic Layer Architectures of 1D Crystals Inserted into Single Walled Carbon Nanotubes, Chem. Commun., 2002, no. 13, pp. 1319–1332.

  4. Kharlamova, M.V., Chernysheva, M.V., and Eliseev, A.A., One-Dimensional Structures Based on Single-Wall Carbon Nanotubes Filled with Transition-Metal Halides, Mezhdunarodnyi forum po nanotekhnologiyam “Rusnanotekh’08” (Rusnanotekh’08 Int. Forum on Nanotechnologies), Moscow, 2008, p. 414.

  5. Wilson, M., The Formation of Inorganic Nanotubular Structures in Carbon Nanotubes, Nano Lett., 2004, vol. 4, no. 2, pp. 299–302.

    Article  CAS  Google Scholar 

  6. Wilson, M. and Friederichs, S., The Formation of Low-Dimensional Metal Trihalide Crystals in Carbon Nanotubes, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2006, vol. 62, part 4, pp. 287–295.

    Article  Google Scholar 

  7. Wilson, M., Formation of, and Ion-Transport in, Low-Dimensional Crystallites in Carbon Nanotubes, Faraday Discuss., 2007, vol. 134, pp. 283–295.

    Article  CAS  Google Scholar 

  8. Bishop, C.L. and Wilson, M., The Mechanisms for Filling Carbon Nanotubes with Molten Salts: Carbon Nanotubes As Energy Landscape Filters, J. Phys.: Condens. Matter, 2009, vol. 21, no. 11, paper 115301.

  9. Mellander, B.-E., Electrical Conductivity and Activation Volume of the Solid Electrolyte Phase α-AgI and the High-Pressure Phase fcc AgI, Phys. Rev. B: Condens. Matter Mater. Phys., 1982, vol. 26, no. 10, pp. 5886–5896.

    CAS  Google Scholar 

  10. Ono, S., Kobayashi, M., Kashida, S., and Ohachi, T., Electronic Structure and Diffusion Paths of Ag Ions in Rocksalt Structured AgI, Solid State Ionics, 2007, vol. 178, nos. 15–18, pp. 1023–1026.

    Article  CAS  Google Scholar 

  11. Ivanov-Shitz, A.K., Computer Simulation of Superionic Conductors: II. Cation Conductors, Kristallografiya, 2007, vol. 52, no. 2, pp. 318–331.

    Google Scholar 

  12. Matsunaga, S., Structural and Transport Influence of Dissolving AgBr into AgI in Superionic and Molten Phases by Molecular Dynamics Simulations, Solis State Ionics, 2005, vol. 176, nos. 23–24, pp. 1929–1940.

    Article  CAS  Google Scholar 

  13. Matsunaga, S., Structural and Transport Properties of the AgI-AgBr System in Its Superionic and Molten Phases by Computer Simulation, J. Non-Cryst. Solids, 2007, vol. 353, nos. 32–40, pp. 3459–3462.

    Article  CAS  Google Scholar 

  14. Bitrián, V. and Trullàs J., Molecular Dynamics Study of Polarization Effects on AgI, J. Phys. Chem. B, 2008, vol. 112, no. 6, pp. 1718–1728.

    Article  Google Scholar 

  15. Liu, L.-F., Lee, S.-W., Li, J.-B., et al., Enhanced Ionic Conductivity of AgI Nanowires/AAO Composites Fabricated by a Simple Approach, Nanotechnology, 2008, vol. 19, no. 49, paper 495 706.

  16. Wootton, A. and Harrowell, P., Inorganic Nanotubes Stabilized by Ion Size Asymmetry: Energy Calculations for AgI Clusters, J. Phys. Chem. B, 2004, vol. 108, no. 24, pp. 8412–8418.

    Article  CAS  Google Scholar 

  17. Baldoni, M., Leoni, S., Sgamelotti, A., et al., Formation, Structure, and Polymorphism of Novel Lowest-Dimensional AgI Nanoaggregates by Encapsulation in Carbon Nanotubes, Small, 2007, vol. 3, no. 10, pp. 1730–1734.

    Article  CAS  Google Scholar 

  18. Parrinello, M., Rahman, A., and Vashishta, P., Structural Transitions in Superionic Conductors, Phys. Rev. Lett., 1983, vol. 50, no. 14, pp. 1073–1076.

    Article  CAS  Google Scholar 

  19. Shimojo, F. and Kobayashi, M., Molecular Dynamics Studies of Molten AgI: I. Structure and Dynamical Properties, J. Phys. Soc. Jpn., 1991, vol. 60, no. 11, pp. 3725–3735.

    Article  CAS  Google Scholar 

  20. Tersoff, J., Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems, Phys. Rev. B: Condens. Matter Mater. Phys., 1989, vol. 39, no. 8, pp. 5566–5568.

    Google Scholar 

  21. Smith, W., The DL-POLY Molecular Simulation Package, http://www.cse.clrc.ac.uk/msi/software/DL_POLY/.

  22. Polyakov, V.I., Shape of Conduction Channels in Superionic Conductors: A Crystal-Chemical Approach, Kristallografiya, 2001, vol. 46, no. 3, pp. 485–493.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Gotlib.

Additional information

Original Russian Text © I.Yu. Gotlib, A.K. Ivanov-Shitz, I.V. Murin, A.V. Petrov, R.M. Zakalyukin, 2010, published in Neorganicheskie Materialy, 2010, Vol. 46, No. 12, pp. 1509–1517.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotlib, I.Y., Ivanov-Shitz, A.K., Murin, I.V. et al. Computer simulation of AgI nanostructures in single-wall carbon nanotubes. Inorg Mater 46, 1375–1383 (2010). https://doi.org/10.1134/S0020168510120198

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168510120198

Keywords

Navigation