Skip to main content
Log in

Dielectric permittivity and electrical conductivity of polycrystalline materials

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper examines the influence of composition, structure, and size factor on the dielectric permittivity and electrical conductivity of polycrystalline materials. We demonstrate that, if the 3D structure of a substance remains unchanged, reducing the grain size increases its permittivity, up to 105–106 for nanocrystalline powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batsanov, S.S., Dielectric Techniques As Probes of Chemical Bonding, Usp. Khim., 1982, vol. 51, no. 7, pp. 1201–1224.

    CAS  Google Scholar 

  2. Vul, B.M., Materials with High and Ultrahigh Dielectric Permittivity, Usp. Fiz. Nauk, 1967, vol. 93, no. 11, pp. 541–552.

    Google Scholar 

  3. Smith, M.B., Page, K., Siegrist, Th., et al., Crystal Structure and the Paraelectric-to-Ferroelectric Phase Transition of Nanoscale BaTiO3, J. Am. Chem. Soc., 2008, vol. 130, no. 22, pp. 6955–6963.

    Article  CAS  Google Scholar 

  4. Smith, A.E., Calvarese, T.G., Sleight, A.W., and Subramanian, M.A., An Anion Substitution Route to Low Loss Colossal Dielectric CaCu3Ti4O12, J. Solid State Chem., 2009, vol. 182, no. 2, pp. 409–411.

    Article  CAS  Google Scholar 

  5. Subramanian, M.A., Li, D., Duan, N., et al., High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases, J. Solid State Chem., 2000, vol. 151, no. 2, pp. 323–325.

    Article  CAS  Google Scholar 

  6. Krohns, S., Lunkenheimer, P., Kant, Ch., et al., Colossal Dielectric Constant up to Gigahertz at Room Temperature, Appl. Phys. Lett., 2009, vol. 94, no. 12, paper 122 903.

  7. Biskup, N., de Andres, A., Martinez, J.L., and Perca, C., Origin of the Colossal Dielectric Response of Pr0.6Ca0.4MnO3, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 2, paper 024115.

  8. Meher, K.R.S.P. and Varma, K.B.R., Colossal Dielectric Behavior of Semiconducting Sr2TiMnO6 Ceramics, J. Appl. Phys., 2009, vol. 105, no. 3, paper 034113.

  9. Valdez-Nava, Z., Guillemet-Fritsch, S., Tenailleau, Ch., et al., Colossal Dielectric Permittivity of BaTiO3-Based Nanocrystalline Ceramics Sintered by Spark Plasma Sintering, J. Electroceram., 2009, vol. 22, pp. 238–244.

    Article  CAS  Google Scholar 

  10. Lunkenheimer, P., Bobnar, V., Pronin, A.V., et al., Origin of Apparent Colossal Dielectric Constants, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, paper 052 105.

  11. Lunkenheimer, P., Fichtl, R., Ebbinghaus, S.G., and Loidl, A., Nonintrinsic Origin of the Colossal Dielectric Constants in CaCu3Ti4O12, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 70, paper 172102.

  12. Wang, L.-W. and Zunger, A., Dielectric Constants of Silicon Quantum Dots, Phys. Rev. Lett., 1994, vol. 73, no. 7, pp. 1039–1042.

    Article  CAS  Google Scholar 

  13. Sun, C.Q., Sun, X.W., Tay, B.K., et al., Dielectric Suppression and Its Effect on Photoabsorption of Nanometric Semiconductors, J. Phys. D: Appl. Phys., 2001, vol. 34, pp. 2359–2362.

    Article  CAS  Google Scholar 

  14. Delerue, C., Lannoo, M., and Allan, G., Concept of Dielectric Constant for Nanosized Systems, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 68, paper 115411.

  15. Delerue, C. and Allan, G., Effective Dielectric Constant of Nanostructured Si Layers, Appl. Phys. Lett., 2006, vol. 88, no. 17, paper 173117.

  16. Moss, T.S., A Relationship between the Refractive Index and the Infra-Red Threshold of Sensitivity for Photoconductors, Proc. Phys. Soc., Sect. B, 1950, vol. 63, no. 3, pp. 167–175.

    Article  Google Scholar 

  17. Roduner, E., Size Matters: Why Nanomaterials Are Different, Chem. Soc. Rev., 2006, vol. 35, no. 7, pp. 583–592.

    Article  CAS  Google Scholar 

  18. Batsanov, S.S., Experimental Foundations of Structural Chemistry, Moscow: Moscow Univ. Press, 2008.

    Google Scholar 

  19. Luan, W., Gao, L., Kawaoko, H., et al., Fabrication and Characteristics of Fine-Grained BaTiO3 Ceramics by Spark Plasma Sintering, Ceram. Int., 2004, vol. 30, no. 3, pp. 405–410.

    Article  CAS  Google Scholar 

  20. Tang, X.-G., Effect of Grain Size on the Electrical Properties of (Ba,Ca)(Zr,Ti)O3 Relaxor Ferroelectric Ceramics, J. Appl. Phys., 2005, vol. 97, paper 034109.

  21. He, S., Li, Y., Liu, X., et al., Correlations between Grain Size and Nonlinear Dielectric Properties of As-Deposited SrTiO3 Thin Films, Thin Solid Films, 2005, vol. 478, nos. 1–2, pp. 261–264.

    Article  CAS  Google Scholar 

  22. Abdulkhadar, M. and Thomas, B., Study of Dielectric Properties of Nano-Particles of Cadmium Sulphide, Phys. Status Solidi A, 1995, vol. 150, no. 2, pp. 755–762.

    Article  CAS  Google Scholar 

  23. Kim, N.T. and Nan, Y.N., Sintering of Nanocrystalline BaTiO, Ceram. Int., 2004, vol. 30, no. 7, pp. 1719–1723.

    Article  CAS  Google Scholar 

  24. Xu, Y.P. and Wang, W.Y., Dielectric Properties of GaN Nanoparticles, J. Mater. Sci., 2001, vol. 36, no. 18, pp. 4401–4403.

    Article  CAS  Google Scholar 

  25. George, M., Nair, S.S., Malinil, K.A., et al., Finite Size Effects on the Electrical Properties of Sol-Gel Synthesized CoFe2O4 Powders: Deviation from Maxwell-Wagner Theory and Evidence of Surface Polarization Effects, J. Phys. D: Appl Phys, 2007, vol. 40, pp. 1593–1602.

    Article  CAS  Google Scholar 

  26. Uchino, K., Sadanaga, E., and Hirose, T., Dependence of the Crystal Structure on Particle Size in Barium Titanate, J. Am. Ceram. Soc., 1989, vol. 72, no. 8, pp. 1555–1558.

    Article  CAS  Google Scholar 

  27. Li, X. and Shih, W.-H., Size Effects in Barium Titanate Particles and Clusters, J. Am. Ceram. Soc., 1997, vol. 80, no. 11, pp. 2844–2852.

    Article  CAS  Google Scholar 

  28. Hirai, H., Terauchi, V., Tanaka, M., and Kondo, K., Band Gap of Essentially Fourfold Coordinated Amorphous Diamond Synthesized from C60 Fullerene, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 60, no. 9, pp. 6357–6361.

    CAS  Google Scholar 

  29. Aleksenskii, A.E., Osipov, V.Yu., Vul’, A.Ya., et al., Optical Properties of Nanodiamond Layers, Fiz. Tverd. Tela (S.-Peterburg), 2001, vol. 43, no. 1, pp. 140–145.

    Google Scholar 

  30. Pan, K., Sun, C.Q., Chen, T.P., et al., Dielectric Suppression of Nanosolid Silicon, Nanotechnology, 2004, vol. 15, pp. 1802–1806.

    Article  CAS  Google Scholar 

  31. Zhou, S.-M., Dielectric Properties of Phase-Size-Control CdS Nanoparticles, Phys. Status Solidi A, 2003, vol. 200, no. 2, pp. 423–428.

    Article  CAS  Google Scholar 

  32. Batsanov, S.S., Poyarkov, K.B., and Gavrilkin, S.M., Reorientational Polarization of Molecular Liquids in Contact with Diamond Crystals, Pis’ma Zh. Eksp. Teor. Fiz., 2008, vol. 88, no. 9, pp. 686–687.

    Google Scholar 

  33. Gavrilkin, S.M., Poyarkov, K.B., Matseevich, B.V., and Batsanov, S.S., Dielectric Properties of Diamond Powder, Neorg. Mater., 2009, vol. 45, no. 9, pp. 1055–1056 [Inorg. Mater. (Engl. Transl.), vol. 45, no. 9, pp. 980–981].

    Article  Google Scholar 

  34. Poyarkov, K.B., Gavrilkin, S.M., and Batsanov, S.S., Polarization of Ionic Crystals, Zh. Fiz. Khim., 2009, vol. 83, no. 11, pp. 2185–2186.

    Google Scholar 

  35. Batsanov, S.S., Poyarkov, K.B., and Gavrilkin, S.M., Effect of Atomic Structure on the Dielectric Properties of Nanomaterials, Dokl. Akad. Nauk, 2009, vol. 428, no. 3, pp. 322–324.

    Google Scholar 

  36. Ran, L.K., Sun, S.Q., Tau, V.K., et al., Photoluminescence of Si Nanosolids near the Lower End of the Size Limit, J. Phys. Chem. B, 2002, vol. 106, no. 45, pp. 11725–11727.

    Article  Google Scholar 

  37. Sun, C.Q., Tau, B.K., Zheng, Kh.T., et al., Bond-Order-Bond-Dond-Strength Correlation Mechanism for the Shape-and-Size Dependence of a Nanosolid, J. Phys.: Condens. Matter, 2002, vol. 14, no. 34, pp. 7781–7796.

    Article  CAS  Google Scholar 

  38. Okazawa, T., Nishimura, T., and Kido, Y., Surface Structure and Lattice Dynamics of KI (001) Studied by High-Resolution Ion Scattering Combined with Molecular Dynamics Simulation, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, paper 125402.

  39. Jacob, R., Jacob, A.P., and Mainwaring, D.E., Mechanism of the Dielectric Enhancement in Polymer-Alumina Nano-Particle Composites, J. Mol. Struct., 2009, vol. 933, pp. 77–85.

    Article  CAS  Google Scholar 

  40. Yildirim, F.A., Ucurum, C., Schlieve, R.R., and Bauhofer, W., Spin-Cast Composite Gate Insulation for Low Driving Voltages and Memory Effect in Organic Field-Effect Transistors, Appl. Phys. Lett., 2007, vol. 90, paper 083501.

  41. Park, S.H., Thielemann, P., Asbeck, P., and Bandaru, P.R., Enhanced Dielectric Constants and Shielding Effectiveness of Uniformly Dispersed, Functionalized Carbon Nanotube Composites, Appl. Phys. Lett., 2009, vol. 94, no. 24, paper 243111.

  42. Thostenson, E.T., Ziaee, S., and Chou, T.-W., Processing and Electrical Properties of Carbon Nanotube/Vinyl Ester Nanocomposites, Compos. Sci. Technol., 2009, vol. 69, pp. 801–804.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Batsanov.

Additional information

Original Russian Text © S.S. Batsanov, V.I. Galko, K.V. Papugin, 2010, published in Neorganicheskie Materialy, 2010, Vol. 46, No. 12, pp. 1500–1503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsanov, S.S., Galko, V.I. & Papugin, K.V. Dielectric permittivity and electrical conductivity of polycrystalline materials. Inorg Mater 46, 1365–1368 (2010). https://doi.org/10.1134/S0020168510120174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168510120174

Keywords

Navigation