Skip to main content
Log in

Effect of fluorine doping on the optical loss in MCVD fibers based on heavily doped germanosilicate glass

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the size distribution of silica glass particles in the fabrication of heavily doped germanosilicate glass fiber preforms by modified chemical vapor deposition (MCVD) at different Freon 113 concentrations in the gas mixture. The addition of Freon 113 to the gas mixture is shown to reduce the particle size in the deposited core glass layer and the optical loss in the fiber. A mechanism is proposed which accounts for the effect of the initial particle size in the core glass layer on the anomalous scattering and total optical loss in heavily doped step- and graded-index fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Davey, S.T., Williams, D.L., Spirit, D.M., and Ainslie, B.J., The Fabrication of Low Loss High NA Silica Fibres for Raman Amplification, Proc. SPIE-Int. Soc. Opt. Eng., 1989, vol. 1171, pp. 181–191.

    CAS  Google Scholar 

  2. Sudo, S. and Itoh, H., Efficient Non-Linear Optical Fibres and Their Applications, Opt. Quantum Electron., 1990, vol. 22, pp. 187–212.

    Article  CAS  Google Scholar 

  3. Dianov, E.M., Raman Fiber Amplifiers, Proc. SPIE-Int. Soc. Opt. Eng., 2000, vol. 4083, pp. 90–100.

    Google Scholar 

  4. Dianov, E.M., Mashinsky, V.M., Neustruev, V.B., et al., Origin of Excess Loss in Single-Mode Optical Fibers with High GeO2-Doped Silica Core, Opt. Fiber Technol., 1997, vol. 3, pp. 77–86.

    Article  Google Scholar 

  5. Abramov, A.A., Bubnov, M.M., Dianov, E.M., et al., Influence of Fluorine Doping on Drawing-Induced Fibre Losses, Electron. Lett., 1993, vol. 29, no. 22, pp. 1977–1978.

    Article  CAS  Google Scholar 

  6. Abramov, A.A., Bubnov, M.M., Dianov, E.M., et al., The Effect of Fluorine Co-Doping on Scattering and Absorption Properties of Highly Germanium-Doped Silica Glass, Proc. XVII Int. Congr. on Glass, Beijing, 1995, vol. 7, pp. 70–75.

    Google Scholar 

  7. Tocahashi, H., Oyobe, A., Kosuge, M., and Setaka, R., Characteristics of Fluorine-Doped Silica Glass, Proc. Eur. Conf. on Optical Communication, 1986, pp. 3–6.

  8. Kirchhof, J., Unger, S., and Knappe, B., Interaction of Germanium and Fluorine in the Preparation of Optical Waveguides, Tech. Digest Opt. Fiber Commun., 1994, pp. 134–135.

  9. Tsujikawa, K., Ohashi, M., Shiraki, K., and Tateda, M., Scattering Property of F and GeO2 Codoped Silica Glasses, Electron. Lett., 1994, vol. 30, no. 4, pp. 351–352.

    Article  CAS  Google Scholar 

  10. Tajima, K., Ohashi, M., Shiraki, K., et al., Low Rayleigh Scattering P2O5-F-SiO2 Glasses, J. Lightwave Technol., 1992, vol. 10, no. 11, pp. 1532–1535.

    Article  CAS  Google Scholar 

  11. Krylov, V.A., Krylov, V.V., Lazukina, O.P., et al., Automatic Counter of Particles in Liquids, Izmer. Tekh., 1986, no. 2, pp. 55–56.

  12. Kleinert, P., Schmidt, D., Grau, L., and Laukner, H.-J., About the Chemistry of the Oxidation of Gaseous Mixtures of C2F3Cl3, SiCl4, GeCl4 and POCl3 at High Temperatures, Z. Anorg. Allg. Chem., 1988, vol. 565, pp. 154–162.

    Article  CAS  Google Scholar 

  13. Jablonowski, D.P., Fiber Manufacture at ATT with the MCVD Process, J. Lightwave Technol., 1986, vol. LT-4, no. 8, pp. 1016–1019.

    Article  Google Scholar 

  14. Murata, H., Recent Developments in Vapor Phase Axial Deposition, J. Lightwave Technol., 1986, vol. LT-4, no. 8, pp. 1026–1033.

    Article  Google Scholar 

  15. Potkay, E., Clark, H.R., Smyth, I.P., et al., Characterization of Soot from Multimode Vapour-Phase Axial Deposition (VAD) Optical Fiber Performs, J. Lightwave Technol., 1988, vol. 6, no. 8, pp. 1338–1347.

    Article  CAS  Google Scholar 

  16. Walker, K.L., Geyling, F.T., and Nagel, S.R., Thermophoretic Deposition of Small Particles in the Modified Chemical Vapor Deposition (MCVD) Process, J. Am. Ceram. Soc., 1980, vol. 63, nos. 9–10, pp. 552–558.

    Article  CAS  Google Scholar 

  17. Simpkins, P.G., Greenberg-Kosinski, S., and McChesney, J.B., Thermophoresis: The Mass Transfer Mechanism in Modified Chemical Vapor Deposition, J. Appl. Phys., 1979, vol. 50, no. 9, pp. 5676–5681.

    Article  CAS  Google Scholar 

  18. Likhachev, M.E., Bubnov, M.M., Semenov, S.L., et al., Mechanisms of Optical Losses in GeO2-Rich Optical Fibers, Kvantovaya Elektron. (Moscow), 2003, vol. 33, no. 7, pp. 633–638.

    Article  CAS  Google Scholar 

  19. Mazumder, P., Logunov, S.L., and Raghavan, S., Analysis of Excess Scattering in Optical Fibers, J. Appl. Phys., 2004, vol. 96, no. 8, pp. 4042–4049.

    Article  CAS  Google Scholar 

  20. Likhachev, M.E., Bubnov, M.M., Semenov, S.L., et al., Scattering Ellipsoid in Germania-Rich Fibers, Kvantovaya Elektron., 2006, vol. 36, no. 5, pp. 464–469.

    Article  CAS  Google Scholar 

  21. Biriukov, A.S., Dianov, E.M., Kurkov, A.S., et al., Core-Cladding Interface Disturbances during the Collapsing Process Is One of the Origins of Optical Losses in Heavily Doped Fibers, Proc. SPIE-Int. Soc. Opt. Eng., 1998, vol. 3211, pp. 309–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Bubnov.

Additional information

Original Russian Text © M.M. Bubnov, A.N. Guryanov, E.M. Dianov, L.A. Ketkova, M.E. Likhachev, M.Yu. Salganskii, V.F. Khopin, 2010, published in Neorganicheskie Materialy, 2010, Vol. 46, No. 5, pp. 626–632.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bubnov, M.M., Guryanov, A.N., Dianov, E.M. et al. Effect of fluorine doping on the optical loss in MCVD fibers based on heavily doped germanosilicate glass. Inorg Mater 46, 556–562 (2010). https://doi.org/10.1134/S0020168510050213

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168510050213

Keywords

Navigation