Skip to main content
Log in

Transition from crystal-like to glass-like behavior of thermal conductivity in the Sr0.16Ba0.54La0.30F2.30 solid solution

  • Published:
Inorganic Materials Aims and scope

Abstract

Using a steady-state axial flow technique, we have measured the thermal conductivity of single crystals of congruently melting SrF2-BaF2-LaF3 solid solutions from 50 to 300 K: Ba0.66Sr0.34F2 (minimum in the melting curves), Ba0.70La0.30F2.30 (maximum in the melting curves), and Sr0.16Ba0.54La0.30F2.30 (saddle point on the melting surfaces). The thermal conductivity of the isovalently doped fluorite solid solution is typical of crystals containing point defects. Heterovalent substitution leads to glass-like behavior of thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fedorov, P.P. and Osiko, V.V., Crystal Growth of Fluorides, Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, Capper, P., Ed., Wiley Series in Materials for Electronic and Optoelectronic Applications, New York: Wiley, 2005, pp. 339–356.

    Google Scholar 

  2. Basiev, T.T., Vasil’ev, S.V., Doroshenko, M.E., et al., Efficient Lasing in Diode-Pumped Yb3+:CaF2-SrF2 Solid-Solution Single Crystals, Kvantovaya Elektron. (Moscow), 2007, vol. 37, no. 10, pp. 934–937.

    Article  CAS  Google Scholar 

  3. Basiev, T.T., Doroshenko, M.E., Fedorov, P.P., et al., Efficient Laser Based on CaF2-SrF2-YbF3 Nanoceramics, Opt. Lett., 2008, vol. 33, no. 5, pp. 521–524.

    Article  CAS  Google Scholar 

  4. Parfen’eva, L.S., Smirnov, I.A., and Tikhonov, V.V., Thermal Conductivity of Ca, Ba, and Sr Fluorides, Fiz. Tverd. Tela (Leningrad), 1971, vol. 13, no. 5, pp. 1509–1511.

    Google Scholar 

  5. Ivanov-Shitz, A.K., Sorokin, N.I., Arutyunyan, S.R., et al., Thermal Conductivity of Ionic Conductors: Fluorite Solid Solutions, Fiz. Tverd. Tela (Leningrad), 1986, vol. 28, no. 4, pp. 1235–1237.

    Google Scholar 

  6. Mogilevskii, B.M., Reiterov, V.M., Tumpurova, V.F., et al., Thermal Conductivity of Fluorite Doped with Trivalent Metals, Inzh.-Fiz. Zh., 1975, vol. 28, no. 3, pp. 439–442.

    CAS  Google Scholar 

  7. Popov, P.A., Fedorov, P.P., Kuznetsov, S.V., et al., Thermal Conductivity of Ca1 − x YbxF2 + x Single Crystals, Dokl. Akad. Nauk, 2008, vol. 419, no. 5, pp. 615–617.

    Google Scholar 

  8. Popov, P.A., Fedorov, P.P., Kuznetsov, S.V., et al., Thermal Conductivity of Ba1 − x YbxF2 + x Single Crystals, Dokl. Akad. Nauk, 2008, vol. 421, no. 2, pp. 183–185.

    Google Scholar 

  9. Popov, P.A., Fedorov, P.P., Konyushkin, V.A., et al., Thermal Conductivity of Sr1 − x YbxF2 + x Single Crystals, Dokl. Akad. Nauk, 2008, vol. 421, no. 5, pp. 614–616.

    Google Scholar 

  10. Popov, P.A., Fedorov, P.P., Kuznetsov, S.V., et al., Thermal Conductivity of Inorganic Fluorides, Sovremennye neorganicheskie ftoridy. Trudy tret’ego mezhdunarodnogo sibirskogo seminara “INTERSIBFLUORINE-2008” (Advanced Inorganic Fluorides: Proc. 3rd Int. Siberian Seminar INTERSIBFLUORINE-2008), Vladivostok, 2008, pp. 96–100.

  11. Popov, P.A., Karimov, D.N., Komar’kova, O.N., et al., Thermal Conductivity of Ca0.6Sr0.4F2 Congruently Melting Fluorite-Structure Single Crystals, XIII Natsional’naya konferentsiya po rostu kristallov (XIII Natl. Conf. on Crystal Growth), Moscow, 2008, p. 236.

  12. Berman, R., Thermal Conduction in Solids, Oxford: Clarendon, 1976.

    Google Scholar 

  13. Oskotskii, V.S. and Smirnov, I.A., Defekty v kristallakh i teploprovodnost’ (Defects and Thermal Conduction in Crystals), Leningrad: Nauka, 1972.

    Google Scholar 

  14. Fedorov, P.P., Ivanovskaya, N.I., Stasyuk, V.A., et al., Phase Equilibria in the System SrF2-BaF2-LaF3, Dokl. Akad. Nauk, 1999, vol. 366, no. 4, pp. 500–502.

    CAS  Google Scholar 

  15. Sirota, N.N., Popov, P.A., and Ivanov, I.A., The Thermal Conductivity of Monocrystalline Gallium Garnets Doped with Rare-Earth Elements and Chromium in the Range 6–300 K, Cryst. Res. Technol., 1992, vol. 27, no. 4, pp. 535–543.

    Article  CAS  Google Scholar 

  16. Fedorov, P.P., Heterovalent Isomorphism and Solid Solutions with a Variable Number of Ions in the Unit Cell, Russ. J. Inorg. Chem., 2000, vol. 45,suppl. 3, pp. S268–S291.

    Google Scholar 

  17. Fedorov, P.P., Nanophase Materials: Fluoride Glasses and Antiglasses, Kondens. Sredy Mezhfaznye Granitsy, 2002, vol. 4, no. 4, pp. 346–349.

    Google Scholar 

  18. Cahill, D.G. and Pohl, R.O., Low-Energy Excitations in the Mixed Crystals Ba1 − x LaxF2 + x , Rhys. Rev. B: Condens. Matter Mater. Phys., 1989, vol. 39, no. 14, pp. 10477–10480.

    CAS  Google Scholar 

  19. Tu, J.J. and Sievers, A.J., Experimental Study of Raman- Active Two-Level Systems and the Boson Peak in LaF3-Doped Fluorite Mixed Crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 66, paper 094 206.

  20. Fedorov, P.P., Association of Point Defects in Nonstoichiometric M1 − x RxF2 + x Fluorite-Type Solid Solutions, Butll. Soc. Cat. Cien., 1991, vol. 12, no. 2, pp. 349–381.

    Google Scholar 

  21. Andeen, N.H., Clausen, K.N., Kjems, J.K., and Schoonman, J., A Study of the Disorder in Heavy Doped Ba1 − x LaxF2 + x by Neutron Scattering, Ionic Conductivity and Specific Heat Measurements, J. Phys. C: Solid State Phys., 1986, vol. 19, pp. 2377–2389.

    Article  Google Scholar 

  22. Kieser, M. and Greis, O., Darstellung und Eigenschaften der Fluorituberstrukturphaser Ba4SE3F17 mit SE = Ce- Nd, Sm-Lu und Y, Z. Anorg. Allg. Chem., 1980, vol. 469, pp. 164–171.

    Article  CAS  Google Scholar 

  23. Otroshchenko, L.P., Alexandrow, V.B., Muradyan, L.A., et al., Neutron Diffraction Study of the Features of Fluorine Ions Incorporation Into Ba1 − x RxF2 + x Solid Solutions, Butll. Soc. Cat. Cien., 1991, vol. 12, no. 2, pp. 383–391.

    Google Scholar 

  24. Aminov, L.K., Kurkin, I.N., Kurzin, S.P., et al., ESR Detection of La6F37 Clusters in (BaF2)1 − x (LaF3)x Solid Solutions, Fiz. Tverd. Tela (S.-Peterburg), 2007, vol. 49, no. 11, pp. 1990–1993.

    Google Scholar 

  25. Muradyan, L.A., Maksimov, B.A., Mamin, B.F., et al., Atomic Structure of the Nonstoichiometric Phase Sr0.69La0.31F2.31, Kristallografiya, 1986, vol. 31, no. 2, pp. 248–251.

    CAS  Google Scholar 

  26. Loshmanov, A.A., Maksimov, B.A., Muradyan, L.A., et al., Atomic Structure of the Nonstoichiometric Phase Sr0.84Lu0.16F2.16 and Special Features of the Incorporation of R3+ Cations and Additional Fluorine Atoms into Fluorite Hosts, Koord. Khim., 1989, vol. 15, no. 8, pp. 1133–1138.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © P.A. Popov, P.P. Fedorov, V.A. Konyushkin, A.N. Nakladov, T.T. Basiev, 2010, published in Neorganicheskie Materialy, 2010, Vol. 46, No. 5, pp. 621–625.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Popov, P.A., Fedorov, P.P., Konyushkin, V.A. et al. Transition from crystal-like to glass-like behavior of thermal conductivity in the Sr0.16Ba0.54La0.30F2.30 solid solution. Inorg Mater 46, 551–555 (2010). https://doi.org/10.1134/S0020168510050201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168510050201

Keywords

Navigation