Skip to main content
Log in

Doped anodic oxide films obtained on silicon and silicon compounds: Preparation, properties, and application

  • Published:
Inorganic Materials Aims and scope

Abstract

The physicochemical fundamentals of electronics based on doped anodic oxide films (AOFs) obtained on silicon and silicon compounds are considered.

The achievements in the employment of phosphorus and boron AOFs in semiconductor electronics and their prospects are briefly outlined.

The findings of investigations into growth kinetics, composition, structure, and properties of AOFs obtained on silicon, silicon carbide, and Si3N4 are summarized; the same is done for thermal and anodic oxides grown on silicon in electrolytes based on ethylene glycol (EG) and tetrahydrofurfuryl alcohol (THFA) containing H3AsO4, H3PO4, and H3BO3 as dopants.

The prerequisites for the development of a theory about the formation of doped AOFs on silicon and silicon compounds are established; AOFs hold the greatest promise for an application in solving various problems of micro- and nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mileshko, L.P. and Korolev, A.N., Anodic Oxide Films Formed on Silicon and Silicon Compounds in Doping Electrolytes, Trudy decyatoi mezhdunarodnoi nauchnoi konf. i shkoly-seminara: actual’nye problemy tverdotel’noi electroniki i mikroelectroniki (Proc. Tenth International Scientific Conf. and School-Seminar: The Topical Problems in Solid-State Electronics and Microelectronics), Taganrog: TRTU, 2006, vol. 1, pp. 28–30.

    Google Scholar 

  2. Mileshko, L.P., Attainments and Outlook for Doped Oxide Films in the Technology of Semiconductor Devices and ICs, Izv. TRTU, spetsial’nyi vypusk, Trudy XLVIII nauchno-technich. konf. TRTU (Izv. TRTU, Special Issue: Proc. XLVIII Scientific and Technical Conf. of TRTU), Taganrog: TRTU, 2003, no. 1(30), p. 210.

    Google Scholar 

  3. Baraban, A.P., Bulavinov, V.V., and Konorov, P.P., Elektronika sloev SiO 2 na kremnii (Electronics in SiO2 Layers on Silicon), Leningrad: LGU, 1988.

    Google Scholar 

  4. Chistyakov, Yu.D., Bredikhin, I.S., and Mileshko, L.P., Anodic Silicon Oxide Films as a Solid-State Diffusant in Planar Technology, Zarubezhnaya Elektron. Tekh., Moscow: TsNII Elektronika, 1976, no. 1(134), pp. 3–38.

    Google Scholar 

  5. Sorokin, I.N., Sechenov, D.A., Mileshko, L.P., et al., Metodich. ukazan. po izuchen. kursa: “Fiz.-khim. protsessy v tekhnol. radioelektr. apparat. (REA)” po teme electrokhim. protsessy v tekhnol. REA, Chast’ II, Anodnoe okislenie (Methodical Instructions on the Study of Manual on Physicochemical Processes in Technology of Radio-Electronic Instrumentation (REI) on the Subject of Electrochemical Processes in REI Technology: Part II, Anodic Oxidation), Taganrog: TRTI, 1986, 83 p.

    Google Scholar 

  6. Ignat’ev, V.V. and Trunov, S.V., The Effect of Forming Conditions on Electrophysical Properties of Superthin SiO2 Layers, Elektron. Tekh. Ser. 3: Mikroelektron., 1988, no. 3(127), pp. 58–60.

  7. Baranov, I.L., Tabulina, L.V., Stanovaya, L.S., et al., Synthesis of Anodic Silicon Oxide Films in Water-Organic Solutions Containing Orthophosphoric Acid, Elektrokhimiya, 2006, vol. 42, no. 4, pp. 370–376.

    Google Scholar 

  8. Macintosh, D.M., Schmidt, P.F., and Larkin, M.V., Integrated Supplementing Devices Manufactured with Electrochemical Technique, Proc. IEEE, 1964, Vol. 52, no.12, pp. 1570–1572.

    Google Scholar 

  9. Schmidt, P.F. and Owen, A.E., Anodic Oxide Films for Device Fabrication in Silicon. I. The Controlled Incorporation of Phosphorus into Anodic Oxide Films on Silicon, J. Electrochem. Soc., 1964, vol. 111, no. 6, pp. 682–688.

    Article  CAS  Google Scholar 

  10. Schmidt, P.F., O’Keeffe, T.W., Oroshnik, J.F., et al., Doped Anodic Oxide Films for Device Fabrication in Silicon. II. Diffusion Sources of Controlled Composition and Diffusion Results, J. Electrochem. Soc., 1965, vol. 112, no. 8, pp. 800–807.

    Article  CAS  Google Scholar 

  11. Croset, M., Anodic Silicon Oxide: Properties and Applications, L’onde Electrique, 1968, vol. 48, no. 501, pp. 1057–1064.

    Google Scholar 

  12. Fundamentals of Silicon-based IC Technology, vol. 1: Oxidation, Diffusion and Epitaxy, Burger R.M. and Donovan R.P., Eds., New York: Prentice-Hall, Inc., Englewood Cliffs, 1967.

    Google Scholar 

  13. Mileshko, L.P., Electrolytes Employed in Technology of Doped Anodic Silicon Oxide Films, in Trudy Vserossiiskoi konf. po sovremennym elektrokhimicheskim tekhnologiyam (Proc. All-Russian Conf. on the Modern Electrochem. Technol.), Saratov, 2002, pp. 163–167.

  14. Ugai Ya.A., Anokhin, V.Z., Vladimirova, L.N., et al., Anodic Oxidation of Silicon in Ethylen Glycol in the Presence of Oxygen-contained Anions with Chemical Elements of the Fifth Group of the Periodical Table and Boron, in poluprovodnikovye materialy i ikh primenenie (Semiconductor Materials and Their Application), Voronezh: VGU, 1974, pp. 136–140.

    Google Scholar 

  15. Blagikh, V.P., Anokhin, V.Z., and Vladimirova, L.N., Investigation into Growth Kinetics of Doped Oxides on Silicon, in Poluprovodnikovye materialy i ikh primenenie (Semiconductor Materials and Their Application), Voronezh: VGU, 1974, pp. 193–197.

    Google Scholar 

  16. Madou, M.J., Morrison, S.R., and Bondarenko, V.P., Introduction of Impurities in Anodically-grown Silica, J. Electrochem. Soc., 1988, vol. 135, no. 1, pp. 229–235.

    Article  CAS  Google Scholar 

  17. Mileshko, L.P., Kinetics and Mechanism for Anodic Oxidation of Silicon in Dopant-contained Electrolytes, in Trudy 2 Vsesoyuznogo simpoziuma: Elektrokhimiya i korroziya metallov v vodno-organicheskikh i organicheskikh sredakh (Proc. 2th All-Union Symposium on Electrochemistry and Metal Corrosion in Water-Organic and Organic Media), Rostov-on-Don: GKP PGO “Yuzhgeologiya”, 1984, pp. 105–106.

    Google Scholar 

  18. Mileshko, L.P., Anodic Oxidation of Silicon, Silicon Carbide, and Silicon Nitride, Trudy II Vsesoyuzn. nauch. konf. po fiz. okisn. plenok, in (Proc. II All-Union Sci. Conf. on Phys. of Oxide Films), Petrozavodsk: PGU, 1987, p. 31.

    Google Scholar 

  19. Mileshko, L.P., Sorokin, I.N., and Bondarenko, V.P., Anodic Oxidation of Silicon in H3PO4 and H3BO3 containing Solution, Abs. 40th Int. Soc. Electrochem. Meeting, Kyoto, Japan, 1989, pp. 748–749.

  20. Borisov, Yu.I., On the Strategy for Progress in Electronic Industry, Electron. Prom-st, 2006, no. 4, pp. 4–16.

  21. Mileshko, L.P., Doped Anodic Silica Layers on Silicon as Diffusant, Kurzfassungen Innomata’ 96. Innovation by Materials. Dresden, 7–9 Mai, 1996. 2 Ausstellungstagung für Material — Technologie und Werkstoff — Anwendungen (Proc. 2th Exhibition and Conference on Technology of Materials and their Applications, Innovation by Materials), Dresden: DRF PUNCT, 1996, p. 338.

    Google Scholar 

  22. Bredikhin, I.S., Volkova, T.A., Mileshko, L.P., et al., Application of Phosphorus-doped Anodic Oxide Films Intended for Manufacture of MOS Transistors, in Aktiviruemye protsessy tekhnologii mikroelektroniki (Activated Processes in Microelectronics), Taganrog: TRTI, 1976, vol. 2, pp. 206–209.

    Google Scholar 

  23. Mileshko, L.P. and Avdeev, S.P., Forming of Base and Emitter Areas of n-p-n Transistors with the Use of Diffusion of Phosphorus and Boron from Anodic Silicon Oxide Films, Elektron. Prom-st, 2002, no. 1. pp. 67–68.

  24. Mileshko, L.P. and Avdeev, S.P., Technologies of Siliconbased ICs: Introduction of Boron Impurities from Anodic Oxide Films, Elektron. Prom-st, 2004, no. 1. pp. 61–62.

  25. Mileshko, L.P., Formation of n +-Layer on the Workable Side of a Silicon-Intensifier-Target Vidicon through Diffusion of Phosphorus from Anodic Oxide Film, Elektron. Prom-st, 2006, no. 4. p. 85.

  26. Mileshko, L.P., Application of Doped Anodic Oxide Films in Technology of Silicon-based Devices and ICs, Elektron. Prom-st, 2004, no. 4, pp. 160–161.

  27. Mileshko, L.P. and Avdeev, S.P., Diffusion of Phosphorus and Boron into Silicon from Anodic Oxide Films, Fiz. Khim. Obrab. Mater., 2003, no. 6, pp. 67–72.

  28. Mileshko, L.P. and Avdeev, S.P., Anodic Oxidation of Silicon and its Impact on Diffusion Constants for Boron and Phosphorus Admixtures from Doped Oxide Films, Izv. Vyssh. Uchebn. Zaved., Elektron., 2004, no. 5, pp. 25–32.

  29. Sechenov, D.A., Varzarev, Yu.N., and Mileshko, L.P., Phosphorus Diffusion from an Anodic Oxide Film under Enhanced Thermal Treatment, Izv. Vyssh. Uchebn. Zaved., Elektron., 1997, no. 5, pp. 48–50.

  30. Mileshko, L.P., Varzarev, Yu.N., and Avdeev, S.P., The Depth Profiles of Electrically-active Phosphorus in Silicon under Diffusion from an Anodic Oxide Film under Enhanced Thermal Treatment Conditions, Izv. Vyssh. Uchebn. Zaved., Elektron., 2004, no. 6, pp. 90–91.

  31. Mileshko, L.P., Arsenic Diffusion from Anodic Arsenate Oxide Films into Silicon, Neorg. Mater., 2008, vol. 44, no. 2, pp. 135–136.

    Google Scholar 

  32. Mileshko, L.P. and Avdeev, S.P., Combined Diffusion of Arsenic with Phosphorus or Boron from Anodic Oxide Films into Silicon, Fiz. Khim. Obrab. Mater., 2004, no. 2, pp. 84–86.

  33. Borisenko, A.I., Novikov, V.V., Prikhod’ko, N.V., et al., Tonkie neorganicheskie plenki v mikroelectronike (Thin Inorganic Films in Microelectronics), Leningrad: Nauka, 1972.

    Google Scholar 

  34. Borisenko, V.E., Tverdofaznye protsessy v poluprovodnikakh pri impul’snom nagreve (Solid-Phase Processes in Semiconductors under Flash Heating), Labunov, V.A., Ed., Minsk: Navuka i Tekhnika, 1992.

    Google Scholar 

  35. Mileshko, L.P., Anodic Oxidation of Silicon in Doping Electrolytes, Fiz. Khim. Obrab. Mater., 2004, no. 3, pp. 81–92.

  36. VLSI Technology, vol. 1, Sze, S.M., Ed., New York: McGraw-Hill, 1983.

    Google Scholar 

  37. Gotra, Z.Yu., Tekhnologiya mikroelektronnykh ustroistv. Spravochnik (IC Technology, Handbook), Moscow: Radio i Svyaz’, 1991.

    Google Scholar 

  38. Shishiyanu, S.T., Shishiyanu, T.S., and Railyan, S.K., Shallow p-n Junctions in Silicon Obtained with Pulse Annealing, Fiz. Tekh. Poluprovodn., (S.-Peterburg), 2002, vol. 36, no. 5, pp. 611–617.

    Google Scholar 

  39. Odynets, L.L. and Orlov, V.M., Anodhye oksidnye plenki (Anodic Oxide Films), Leningrad: Nauka, 1990.

    Google Scholar 

  40. Mileshko, L.P. and Varzarev, Yu.N., Anodic Oxidation of Silicon in Arsenate Electrolytes based on Ethylene Glycol, Fiz. Khim. Obrab. Mater., 2004, no. 6, pp. 43–47.

  41. Mileshko, L.P., Mechanism for Electrochemical Formation of SiO2 from Si3N4-Si Structures, Izv. Vyssh. Uchebn. Zaved., Elektron., 2007, no. 1, pp. 3–10.

  42. Mileshko, L.P., Mechanisms for Formation of Phosphorusor Boron-doped Silicon Oxide on Silicon Carbide, Izv. Vyssh. Uchebn. Zaved., Elektron., 2007, no. 2, pp. 10–16.

  43. Mileshko, L.P., Anodic Oxidation of Silicon and Silicon Compounds in Doping Electrolytes, Izv. TRTU. Spetsial’nyi vypusk. Trudy XLIX nauchno-technich. konf. TRTU (Izv. TRTU. Special Issue: Proc. XLIX Scientific and Technical Conf. of TRTU), Taganrog: TRTU, 2004, no. 1(36), p. 239.

    Google Scholar 

  44. Vas’ko, A.T. and Kovach, S.K. Elektrochimiya tugoplavkich metallov (Electrochemistry of Refractory Metals), Kiev: Tekhnika, 1983.

    Google Scholar 

  45. Shutkevich, V.V., Gribanova, E.B., and Tichomolova, K.P., Colloid Chemistry Investigations into Ferrites and Ferriteforming Oxides, Obzory Elektron. Tekh. Ser. 6: Mater., 1987, no. 7(1316), 56 p.

  46. Lyklema, J., The Electrical Double Layer on Oxides, Croatica Chemica Acta, 1971, vol. 43, no. 4, pp. 249–260.

    CAS  Google Scholar 

  47. Mileshko, L.P. and Gaponenko, N.V., Colloid Chemistry Laws Governing Formation and Structure of Doped Oxide Films at Semiconductor Surface, Trudy vtoroi Vsesoyuzn. konf. po fiz. stekloobrazn. tverd. tel. (Proc. 2th All-Union Conf. on Phys. of Glass-like Solids), Riga-Lielupe: Physic Institute, Latvian acad. sci., 1991, p. 220.

    Google Scholar 

  48. Bogoyavlenskii, A.F., On the Mechanisms for Formation of an Oxide Film on Aluminum: A Review of Theories, in Anodnaya zashchita metallov (Anodic Protection of Metals), Moscow: Mashinostroenie, 1964, pp. 22–34.

    Google Scholar 

  49. Bogoyavlenskii, A.F., On the Theory of Anodic Oxidation of Aluminum, Izv. Vyssh. Uchebn. Zaved., Khim. i Khim. Technol., 1971, vol. 14, no. 5, pp. 712–717.

    CAS  Google Scholar 

  50. Bogoyavlenskii, A.F., On the Chemical Aspects of Anodic Oxidation of Metals, in Anodnoe okislenie metallov (Anodic Oxidation of Metals), Kazan’: KAI, 1983, pp. 3–7.

    Google Scholar 

  51. Erusalimchik, I.G., Physicochemical Properties of Silicon Oxide Surface and Their Association with Some Technological Processes, Elektron. Tekh. Ser. 2: Poluprovod. Prib., 1975, vol. 7(99), pp. 128–135.

    Google Scholar 

  52. Günterschulze, A. and Betz, G., Elektrolyt-Kondensatoren, (Electrolytic Capacitors), Berlin: Krain, 1937.

    Google Scholar 

  53. Young, L, Anodic Oxide Films, London-New York: Acad. Press, 1961.

    Google Scholar 

  54. Mileshko, L.P., On the Processes of Galvanostatic Anodizing of Aluminum, Silicon, and Silicon Nitride Films Izv. Vyssh. Uchebn. Zaved., Electron., 2007, no. 5, pp. 88–89.

  55. Melioranskaya, S.V., Fabrication of Film Capacitors with Maximum Specific Capacity on a Basis of Anodized Aluminum, in Radiofizika i mikroelelektronika, (Radiophysics and Microelectronics), Voronezh: VGU, 1970, pp. 79–85.

    Google Scholar 

  56. Maminova, S.P and Odynets, L.L., Electrochemical Oxidization of Silicon in Ethylene Glycol, Elektrochimiya, 1966, vol. 2, no. 3, pp. 346–350.

    CAS  Google Scholar 

  57. Dell’Oca, C.J., Properties of Anodic Oxide Films Formed in the Anodization of Silicon Nitride, J. Electrochem. Soc., 1973, vol. 120, no. 9, pp. 1226–1230.

    Google Scholar 

  58. Ugai, Ya.A., Shatalov, A.Ya., Anokhin, V.Z., et al., On the Anodic Oxidization of Silicon in Galvanostatic Mode, in Nitevidnye kristally i tonkie plenki (Threadlike Crystals and Thin Films), Voronezh: VGU, 1975, vol. 2, pp. 410–415.

    Google Scholar 

  59. Mileshko, L.P. and Varzarev, Yu.N., Kinetics and Thermodynamics of Anodic Oxidation of Silicon Carbide in Electrolytes on a Basis of Ethylene Glycol, Fiz. Khim. Obrab. Mater., 2000, no. 2, pp. 45–48.

  60. Mileshko, L.P., Sorokin, I.N., and Chistyakov, Yu.D., Electrolytic Formation of Doped Oxide Films on Rotating Silicon Wafers, Elektron. Tech. Ser. 3: Mikroelektron., 1979, vol. 5(83), pp. 99–102.

    Google Scholar 

  61. Maminova, S.P. and Odynets, L.L., Electrochemical Oxidation of Silicon in Ethylene Glycol, Elektrokhimiya, 1966, vol. II, no. 3, pp. 346–350.

    Google Scholar 

  62. Mileshko, L.P., Kinetics of Anodic Oxidization of Rotating Silicon Wafers in Doping Electrolytes, Izv. Vyssh. Uchebn. Zaved., Elektron., 2007, no. 6, pp. 70–71.

  63. Konorov, P.P., Uritskii, V.Ya, and Mel’nitskii, V.A, Kinetics of Electrochemical Oxidation of Silicon and Interface Properties, Mikroelectronika, 1975, vol. 4, no. 1, pp. 61–64.

    CAS  Google Scholar 

  64. Schmidt, P.F. and Michel, W., Anodic Formation of Oxide Films on Silicon, J. Electrochem. Soc., 1957, vol. 104, no. 4, pp. 230–236.

    Article  Google Scholar 

  65. Ugai, Ya.A., Anokhin, V.Z., Vladimirova, L.N., et al., Kinetics of Anodic Oxidation of Silicon in Electrolytes Based on Monobasic Alcohols, in Poluprovodnikovye materialy i ikh primenenie (Semiconductor Materials and Their Application), Voronezh: VGU, 1974, pp. 179–201.

    Google Scholar 

  66. Izidinov, S.O. and Blokhina, A.P., Kinetics of Anodic Oxidation and Photoelectrochemical Behavior of Silicon in Ethylene Glycol with Addition of H2O and NH4NO3, Elektrokhimiya, 1973, vol. IX, no. 10, pp. 1426–1433.

    Google Scholar 

  67. Izidinov, S.O., Blokhina, A.P., and Kamysa, N.G., Low-Temperature Oxidation of Silicon with Anodization in Tetrahydrofurfuryl Alcohol, Zh. Prikl. Khim., (S.-Peterburg), 1974, no. 1, pp. 158–162.

  68. Mileshko, L.P., Fundamental and Applied Aspects of Processes for Obtaining and Applications of Doped Anodic and Sol-Gel Oxide Films, Izv. Belarus. Inzh. Akad., 2002, no. 2(14)/2, pp. 40–41.

  69. Nekrasov, B.V., Osnovy obshchei khimii, tom 1 (The Foundations of General Chemistry, vol. 1), Moscow: Khimiya, 1973.

    Google Scholar 

  70. Nekrasov, B.V., Osnovy obshchei khimii, tom 2 (The Foundations of General Chemistry, vol. 2), Moscow: Khimiya, 1973.

    Google Scholar 

  71. Mileshko, L.P., Avdeev, S.P. and Nestyurina, E.E., Composition, Structure, and Properties of Anodic Silicon Oxide Films, Fiz. Khim. Obrab. Mater., 2003, no. 3, pp. 47–52

  72. Ioshi, A. and Palmberg, P.W., Methods of Surface Analysis, Zanderna, A.W., Ed., New York: Acad. Press, 1979.

    Google Scholar 

  73. Rumak, N.V., “Silicon-Silicon Oxide System in MOS Structures,” Minsk: Nauka i Tekhnika, 1986.

    Google Scholar 

  74. Luchinin, V.V. and Mal’tsev, P.P., High Energy-Gap Materials as a Base of Extreme Electronics of the Day to Come, Russian Microelectronics, 1999, vol. 28, no. 1, pp. 18–24.

    CAS  Google Scholar 

  75. Alok., D., Baliga, B.J., and McLarty, P.K., Thermal Oxidation of 6H-Silicon Carbide at Enhanced Growth Rates, IEEE Trans. Electron Device Lett., 1994, vol. 15, no.10, pp. 424–426.

    Article  CAS  Google Scholar 

  76. Restelli, G., Ostidich, A., and Manara, A., Anodic Oxidation of Silicon Carbide, Thin Solid Films, 1974, vol. 23, no. 1, pp. 23–29.

    Article  CAS  Google Scholar 

  77. Mileshko, L.P., Sorokin, I.N., and Chistyakov, Yu.D., Kinetics of Electrolytic Oxidation of Silicon Carbide and Silicon Nitride, in Aktiviruemye protsessy technologii mikroelektroniki (Activated Processes of Microelectronic Technology), Moscow: MIET, 1980, pp. 29–40.

    Google Scholar 

  78. Madou, M.J., Games, W.P., Fransen, F., et al., Anodic Oxidation of p-type Silicon in Methanol as Compared to Glycol, J. Electrochem. Soc., 1982, vol. 129, no. 12, pp. 2749–2752.

    Article  CAS  Google Scholar 

  79. Young, L., Temperature Rise during Formation of Anodic Oxide Films, Trans. Faraday Soc., 1957, vol. 53, no. 2, pp. 229–233.

    Article  CAS  Google Scholar 

  80. Sharma, S.K., Chakravaty, B.C., Singh, S.N., et al., Growth Kinetics of Thin Anodic Oxide of Silicon and its Dependence on Phosphorus Concentration in Silicon, Thin Solid Films, 1988, vol. 163, pp. 373–377.

    Article  CAS  Google Scholar 

  81. Mileshko, L.P., Anodic Oxidization of Silicon Carbide in Doping Electrolytes on the Basis of Ethylene Glycol, Abs. V Int. Seminar on Silicon Carbide and Related Materials, Velikii Novgorod, 2004, pp. 85–86.

  82. Lilov, S.K., Anodic Oxide Films on Silicon Carbide, Cryst. Res. Technol., 2007, vol.42, no. 11, pp. 1054–1057.

    Article  CAS  Google Scholar 

  83. Belyi, V.I., Vasil’eva, L.L. Grishchenko, V.A., et al., Nitrid kremniya v elektronike (Silicon Nitride in Electronics), Novosibirsk: Nauka, 1982.

    Google Scholar 

  84. Schmidt, P.F. and Wonsidler, D.R., Conversion of Silicon Nitride to Anodic SiO2, J. Electrochem. Soc., 1967, vol. 114, no. 6, pp. 603–605.

    Article  CAS  Google Scholar 

  85. Tripp, T.V., The Anodic Oxidation of Silicon Nitride Films on Silicon, J. Electrochem. Soc., 1970, vol. 117, no. 2, pp. 157–159.

    Article  CAS  Google Scholar 

  86. Dell’Oca, C.J., Properties of Anodic Oxide Films Formed in the Anodization of Silicon Nitride, J. Electrochem. Soc., 1973, vol. 120, no. 9, pp. 1225–1230.

    Article  Google Scholar 

  87. Kas’yanenko, E.B., Konorov, P.P., Mel’nitskii, V.A., et al., Conversion of Dielectric Layers and Change of Electrophysical Properties in Si-Si3N4 and Si-SiO2 Systems under Polarization in Electrolytes, in Aktiviruemye protsessy tekhnologii mikroelektroniki (Activated Processes of Technology in Microelectronics), vol. 2, Taganrog: TRTI, 1976, pp. 95–103.

    Google Scholar 

  88. Litvinovich, G.V., Bondarenko, V.P., and Dolgii, L.N., Investigation into Kinetics of Conversions in Silicon Nitride Thin Films in the Process of Anodic Oxidation, Vestsi Akad. Navuk BSSR, Ser. Fiz.-Mat. Navuk, 1988, no.6, pp. 82–86.

  89. Mileshko, L.P. and Varzarev, Yu.N., Anodic Oxidation of Si3N4 Films on Silicon in Borate and Phosphate Electrolytes Based on Ethylene Glycol, Fiz. Khim. Obrab. Mater., 2002, no. 3, pp. 38–44.

  90. Vértesy, M., Instability in Anodic Silicon Oxide Films, Krist. Tech., 1974, vol. 9, no. 1, pp. 45–50.

    Article  Google Scholar 

  91. Mileshko, L.P., Anodic Electrolytic Doping of Thermal Oxide Films, Fiz. Khim. Obrab. Mater., 2002, no. 6, pp. 55–59.

  92. Mileshko, L.P. and Avdeev, S.P., Reanodizing of Anodic Silicon Oxide Films in Doping Electrolytes, Fiz. Khim. Obrab. Mater., 2004, no. 4, pp. 61–63.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. P. Mileshko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mileshko, L.P. Doped anodic oxide films obtained on silicon and silicon compounds: Preparation, properties, and application. Inorg Mater 45, 1494–1510 (2009). https://doi.org/10.1134/S0020168509130044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168509130044

Keywords

Navigation