Skip to main content
Log in

High-purity chalcogenide glasses for fiber optics

  • Published:
Inorganic Materials Aims and scope

Abstract

The data on the present degree of purity of chalcogenide glasses for fiber optics, on their methods of production and on the properties, which are essential for their actual application, are generalized. The content of limiting impurities in the best samples of chalcogenide glasses is 10–100 ppb wt.; of heterophase inclusions with size of about 100 nm is less than 103 cm−3. On the basis of chalcogenide glasses the multimode and single mode optical fibers are produced with technical and operation characteristics sufficient for a number of actual applications. The minimum optical losses of 12–14 dB/km at 3–5 µm are attained in the optical fiber from arsenic-sulfide glass. The level of losses in standard chalcogenide optical fibers is 50–300 dB/km in 2–9 µm spectral range. The factors, affecting the optical absorption of glasses and optical fibers, are analyzed, and the main directions in further development of chalcogenide glasses as the materials for fiber optics are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frerics, R.J., J. Opt. Soc. Am., 1953, vol. 43, p. 197.

    Article  Google Scholar 

  2. Standler, R.R. and Henderson, R.E., Infrared Fiber Optics Technique, Infrared Phys., 1963, vol. 3, pp. 223–227.

    Article  Google Scholar 

  3. Kapany, N.S. and Simms, R.S., Recent Developments in Infrared Fiber Optics, Infrared Phys., 1965, vol. 5, pp. 69–80.

    Article  CAS  Google Scholar 

  4. Katsuayama, T. and Matsumura, H., Infrared Optical Fibers, Bristol and Philadelphia: Adam Hilger, 1988.

    Google Scholar 

  5. Devyatykh, G.G., Dianov, E.M., Plotnichenko, V.G., Skripachev, I.V., and Churbanov, M.F., Fiber Waveguides Based on High-Purity Chalcogenide Glasses, High-Purity Substances, 1991, vol. 5, no. 1, pp. 1–27.

    Google Scholar 

  6. Nishii, J. and Yamashita, T., Chalcogenide Glass-Based Fibers, in Infrared Fiber Optics, Sanghera, J.S. and Aggarwal, I.D., Eds., Boca Raton, Boston, London, New York, Washington: CRC Press, 1998, pp. 143–183.

    Google Scholar 

  7. Churbanov, M.F. and Plotnichenko, V.G., Optical Fibers from High-Purity Arsenic Chalcogenide Glasses. Semiconducting Chalcogenide Glass. III. Application of Chalcogenide Fibers, Glasses Semiconductor and Semimetals, Amstrerdam: Elsevier, 2004, vol. 80, pp. 209–230.

    Google Scholar 

  8. Inagawa, I., Iizuka, R., Yamagishi, T., and Yokota, R., Optical and Thermal Properties of Chalcogenide Ge-As-Se-Te Glasses for IR Fibers, J. Non-Crystal. Solids, 1987, vols. 95, 96, pp. 801–808.

    Article  Google Scholar 

  9. Feltz, A., Amorphous Inorganic Materials and Glasses, Weinheim: VCH, 1993.

    Google Scholar 

  10. Kokorina, V.F., Glasses for Infrared Optics, Boca Raton: CRC, 1996.

    Google Scholar 

  11. Minaev, V.S., Stekloobraznye poluprovodnikovye splavy (Vitreous Semiconductor Alloys), Moscow: Metallurgiya, 1991.

    Google Scholar 

  12. Bletskan, D.I., Glass Formation in Binary and Ternary Chalcogenide Systems, Chalcogenide Lett., 2006, vol. 3, no. 11, pp. 81–119.

    CAS  Google Scholar 

  13. Mikhailov, M.D. and Tver’yanovich, A.S., Kriticheskie skorosti okhlazhdeniya nekotorykh khalkogenidnykh stekloobrazuyushchikh rasplavov (Critical Cooling Rates of Chalcogenide Glass-forming Melts), Fiz. Khim. Stekla, 1986, vol. 12, no. 3, pp. 274–284.

    CAS  Google Scholar 

  14. Lapin, Yu.K., Mikhailov, M.D., Ananichev, V.A., Baidakov, L.A., and Tetereva, V.A., Kristallizatsiya stekol v sistemakh As-Se i Tl-As-Se pri nagrevanii (Crystallization of As-Se and Tl-As-Se Glasses during Heating), Fiz. Khim. Stekla, 1991, vol. 17, no. 1, pp. 3–7.

    CAS  Google Scholar 

  15. Churbanov, M.F. and Shiryaev, V.S., Kristallizatsiya khalkogenidnykh stekol (Crystallization of Chalcogenide Glasses), Vysokochistye Veshchestva, 1994, no. 4, pp. 21–33.

  16. Shiryaev, V.S., Adam, J.-L., Zhang, X.H., and Churbanov, M.F., Study of Characteristic Temperatures and Nonisothermal Crystallization Kinetics in As-Se-Te Glass System, Solid State Sci., 2005, vol. 7, pp. 209–215.

    Article  CAS  Google Scholar 

  17. Wahab, L.A. and Fayek, S.A., Study of Non-isothermal Kinetics and Thermal Characterization of As-Se-Te System, Solid State Commun., 1996, vol. 100, no. 5, pp. 345–350.

    Article  CAS  Google Scholar 

  18. Shiryaev, V.S., Adam, J.-L., and Zhang, X.H., Calorimetric Study of Characteristic Temperatures and Crystallization Behaviour in Ge-As-Se-Te Glass System, J. Phys. Chem. Solids, 2004, vol. 65, no. 10, pp. 1737–1744.

    Article  CAS  Google Scholar 

  19. Tikhomirov, V.K., Furniss, D., Seddon, A.B., Savage, J.A., Mason, P.D., Orchard, D.A., and Lewis, K.L., Glass Formation in the Te-Enriched Part of the Quaternary Ge-As-Se-Te System and Its Implication for Mid-Infrared Optical Fibres, Infrared Physics and Technology, 2004, vol. 45, pp. 115–123.

    Article  CAS  Google Scholar 

  20. Devyatykh, G.G., Churbanov, M.F., Shiryaev, V.S., Shipunov, V.A., and Kuznetsov, V.V., Kinetics of Crystallization of GeS3.3 Glass, High-Purity Substances, 1993, vol. 7, no. 6, pp. 638–643.

    Google Scholar 

  21. Baro, M.D., Clavaguera, N., Surinach S., et al., DSC Study of Some Ge-Sb-S Glasses, J. Mat. Sci., 1991, vol. 26, pp. 3680–3684.

    Article  CAS  Google Scholar 

  22. Takebe, H., Hirakawa, T., Ichiki, T., and Morinaga, K., Thermal Stability and Structure of Ge-Sb-S Glasses, J. Ceram. Soc. Jpn., 2003, vol. 111, no. 8, pp. 572–575.

    Article  CAS  Google Scholar 

  23. Churbanov, M.F., Shiryaev, V.S., Scripachev, I.V., Snopatin, G.E., Gerasimenko, V.V., Fadin, I.E., Smetanin, S.V., and Plotnichenko, V.G., Optical Fibers Based on As-S-Se Glass System, J. Non-Crystal. Solids, 2001, vol. 284, nos. 1–3, pp. 146–152.

    Article  CAS  Google Scholar 

  24. Petit, L., Carlie, N., Adamietz, F., Couzi, M., Rodriguez, V., and Richardson, K.C., Correlation between Physical, Optical and Structural Properties of Sulfide Glasses in the System Ge-Sb-S, Materials Chemistry and Physics, 2006, vol. 97, pp. 64–70.

    Article  CAS  Google Scholar 

  25. Burdiyan, I.I. and Batalin, V.A., Thermal Conductivity and Heat Capacity of (As2S3)x(As2Se3)1 − x Glasses, Inorg. Mat., 1995, vol. 31, no. 1, pp. 116, 117.

    Google Scholar 

  26. Vlcek, M., Stronski, A., Sklenai, A., Wagner, T., and Kasap, S.O., Structure and Imaging Properties of As40S60 − x Sex Layers as a Function of Their Composition, J. Non-Crystal. Solids, 2000, vols. 266–269, pp. 964–968.

    Article  Google Scholar 

  27. Troles, J., Niu, Y., Duverger-Arfuso, C., Smectala, F., Brilland, L., Nazabal, V., Moizan, V., Desevedavy, F., and Houizot, P., Synthesis and Characterization of Chalcogenide Glasses from the System Ga-Ge-Sb-S and Preparation of a Single-Mode Fiber at 1.55 µm, Mat. Res. Bull., 2008, vol. 43, pp. 976–982.

    Article  CAS  Google Scholar 

  28. Devyatykh, G.G., Dianov, E.M., Plotnichenko, V.G., Pushkin, A.A., Pyrkov, Yu.N., Scripachev, I.V., Snopatin, G.E., Churbanov, M.F., and Shirjaev, V.S., Low Loss Infrared Arsenic Chalcogenide Glass Optical Fibers, SPIE Proc., vol. 4083 (“Advances in Fiber Optics”), 2000, pp. 229–237.

    Article  CAS  Google Scholar 

  29. Churbanov, M.F., Shiryaev, V.S., Smetanin, S.V., Dianov, E.M., Plotnichenko, V.G., Hua Qingheng, Li Guangping, and Shao Hongfeng, Effect of Sulfur on the Optical Transmission of As2Se3 and As2Se1.5Te1.5 Glasses in the Range 500–100 cm−1, Inorg. Mat., 1999, vol. 35, no. 12, pp. 1229–1234.

    CAS  Google Scholar 

  30. Rangel Rojoa, R., Kosa, T., Hajto, E., Ewen, P.J.S., Owen, A.E., Kar, A.K., and Wherrett, B.S., Opt. Commun., 1994, vol. 109, p. 145.

    Article  Google Scholar 

  31. Cerqua-Richardson, K.A., McKinley, J.M., Lawrence, B., Joshi, S., and Villeneuve, B., Opt. Mat., 1998, vol. 10, p. 155.

    Article  CAS  Google Scholar 

  32. Smectala, F., Quemard, C., Leneindre, L., Lucas, J., Barthelemy, B., and De Angelis, C., J. Non-Crystal. Solids, 1998, vol. 239, p. 139.

    Article  Google Scholar 

  33. Sanghera, J.S., Florea, C.M., Shaw, L.B., Pureza, P., Nquyen, V.Q., Bashkansky, M., Dutton, Z., and Aggarwal, I.D., Non-linear Properties of Chalcogenide Glasses and Fibers, J. Non-Cryst. Solids, 2008, vol. 354, pp. 462–467.

    Article  CAS  Google Scholar 

  34. Harbold, J.M., May, P.O., Wise, F.W., and Aitken, B.G., Highly Nonlinear Ge-As-Se and Ge-As-S-Se Glasses for All-Optical Switching, IEEE Technol. Lett. 2006, vol. 14, no. 6, pp. 822–824.

  35. Troles, J., Smectala, F., Boudebs, G., Monteil, A., Bureau, B., and Lucas, J., Chalcogenide Glasses as Solid State Optical Limeters at 1.064 µm, Opt. Mater., 2004, vol. 25, pp. 231–237.

    Article  CAS  Google Scholar 

  36. Sanghera, J., Aggarwal, I., Busse, L., Pureza, P., Nguyen, V., Miklos, R., Kung, F., and Mossadegh, R., Development of Low Loss IR Transmitting Chalcogenide Glass Fibers, SPIE, 1995, vol. 2396, pp. 71–77.

    Article  Google Scholar 

  37. Henderson, D.W. and Ast, D.G., Viscosity and Crystallization Kinetics of As2Se3, J. Non-Crystal. Solids, 1984, vol. 64, pp. 43–70.

    Article  CAS  Google Scholar 

  38. Hari, P., Taylor, P.C., King, W.A., and LaCourse, W.C., Metastable, Drawing-Induced Crystallization in As2Se3 Fibers, J. Non-Crystal. Solids, 1998, vols. 227–230, pp. 789–793.

    Article  Google Scholar 

  39. Hach, C.T., Cerqua-Richardson, K., Varner, J.R., and LaCourse, W.C., Density and Microhardness of As-Se Glasses and Glass Fibers, J. Non-Crystal. Solids, 1997, vol. 209, pp. 159–165.

    Article  CAS  Google Scholar 

  40. Griffiths, J.E., Espinosa, G.P., Remeika, J.P., and Phillips, J.C., Reversible Reconstruction and Crystallization of GeSe2 Glass, Solid State Commun., 1981, vol. 40, no. 12, pp. 1077–1080.

    Article  CAS  Google Scholar 

  41. Churbanov, M.F., Purification of Chalcogenide Glasses, in Properties, Processing and Applications of Glass and Rare Earth Doped Glasses for Optical Fibers, Hewak, D., Ed., EMIS Date-Reviews Series No. 22, pp. 340–343.

  42. Skripachev, I.V., Devyatykh, G.G., Churbanov, M.F., Boiko, V.A., and Bagrov, A.M., High-Purity Chalcogenide Glasses for Fiber Optics, Vysokochistye Veshchestva, 1987, no. 1, pp. 120–129.

  43. Katsuyama, T., Ishida, K., Satoh, S., and Matsumura, H., Low-Loss Ge-Se Chalcogenide Glass Optical Fibres, Appl. Phys. Lett., 1984, vol. 45, pp. 925–927.

    Article  CAS  Google Scholar 

  44. Le Sergent, C., Chalcogenide Glass Optical Fibers—An Overview, Proc. SPIE, 1987, vol. 799, pp. 18–24.

    Google Scholar 

  45. Hu, J., Tarasov, V., Carlie, N., Petit, L., Agarwal, A., Richardson, K., and Kimerling, L., Exploration of Waveguide Fabrication from Thermally Evaporated Ge-Sb-S Glass Films, Optical Materials, 2008, vol. 30, no. 10, pp. 1560–1566.

    Article  CAS  Google Scholar 

  46. Lines, M.E., Scattering Losses in Optical Fiber Materials. II. Numerical Estimates, J. Appl. Phys., 1984, vol. 55, pp. 4058–4063.

    Article  CAS  Google Scholar 

  47. Churbanov, M.F., Gerasimenko, V.V., Malygina, L.S., Smetanin, S.V., Suchkov, A.I., Shiryaev, V.S., Filatov, D.O., and Kruglov, A.V., Formation of Second-Phase Inclusions in Molten As2Se3 Melt via Chemical Transport of Carbon, Inorg. Mat., 2001, vol. 37, no. 4, pp. 339–341.

    Article  CAS  Google Scholar 

  48. Churbanov, M.F., Shiryaev, V.S., Smetanin, S.V., Pimenov, V.G., Zaitseva, E.A., Kryukova, E.B., and Plotnichenko, V.G., Effect of Oxygen Impurity on the Optical Transmission of As2Se3.4 Glass, Inorg. Mat., 2001, vol. 37, no. 11, pp. 1389–1396.

    Google Scholar 

  49. Churbanov, M.F., High-Purity Chalcogenide Glasses as Materials for Fiber Optics, J. Non-Cryst. Solids, 1995, vol. 184, pp. 25–29.

    Article  CAS  Google Scholar 

  50. Devyatykh, G.G., Churbanov, M.F., Scripachev, I.V., Snopatin, G.E., Dianov, E.M., and Plotnichenko, V.G., Recent Developments in As-S Glass Fibers, Proc. XI Int. Symp. on Non-Oxide and New Optical Glasses, 1998, Sheffield, US, pp. 179–183.

  51. Shiryaev, V.S., Smetanin, S.V., Ovchinnikov, D.K., Churbanov, M.F., Krukova, E.B., and Plotnichenko, V.G., Effect of Oxygen and Carbon Impurities on the Optical Transparency of As2Se3 Glass, Inorg. Mat., 2005, vol. 41, no. 3, pp. 308–314.

    Article  CAS  Google Scholar 

  52. Kamensky, V.A., Scripachev, I.V., Snopatin, G.E., Pushkin, A.A., and Churbanov, M.F., High-Power As-S Glass Fiber Delivery Instrument for Pulse YAG:Er Laser Radiation, Appl. Opt., 1998, vol. 37, pp. 5596–5599.

    Article  CAS  Google Scholar 

  53. Popesku, M.A., Non-Crystalline Chalogenides, Dordrecht: Kluwer Academic, 2000.

    Google Scholar 

  54. Devyatykh, G.G., Churbanov, M.F., Shiryaev, V.S., Snopatin, G.E., and Gerasimenko, V.V., Impurity Inclusions in Extra-Pure Arsenic and Chalcogens, Inorg. Mat., 1998, vol. 34, no. 9, pp. 902–906.

    CAS  Google Scholar 

  55. Devyatykh, G.G., Churbanov, M.F., Scripachev, I.V., Snopatin, G.E., Dianov, E.M., and Plotnichenko, V.G., Recent Development in As-S Glass Fibers, J. Non-Cryst. Solids, 1999, vol. 256–257, pp. 318–322.

    Article  Google Scholar 

  56. Churbanov, M.F., Recent Advances in Preparation of High-Purity Chalcogenide Glasses, J. Non-Cryst. Solids, 1992, vol. 140, pp. 324–326.

    Article  CAS  Google Scholar 

  57. Shiryaev, V.S., Churbanov, M.F., Dianov, E.M., Plotnichenko, V.G., Adam, J.-L., and Lucas, J., Recent Progress in Preparation of Chalcogenide As-Se-Te Glasses with Low Impurity Content, J. Optoelectronics Adv. Mat., 2005, vol. 7, no. 4, pp. 1773–1780.

    CAS  Google Scholar 

  58. Sanghera, J.S., Nguyen, V.Q., Pureza, P.C., Kung, F.H., Miklos, R., and Aggarwal, I.D., Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers, J. Lightwave Technol., 1994, vol. 12, no. 5, pp. 737–741.

    Article  CAS  Google Scholar 

  59. Nguyen, V.Q., Sanghera, J.A., Pureza, P., Kung, F.H., Aggarwal, I.D., Fabrication of Arsenic Selenide Optical Fiber with Low Hydrogen Impurities, J. Am. Ceram. Soc., 2002, vol. 85, pp. 2849–2851.

    Article  CAS  Google Scholar 

  60. Shibata, S., Manabe, T., and Horiguichi, M., Preparation of Ge-S glass Fibers with Reduced OH, SH Content, Jpn. J. Appl. Phys., 1981, vol. 20, no. 1, pp. 13–16.

    Article  Google Scholar 

  61. Churbanov, M.F., High-Purity Glasses Based on Arsenic Chalcogenides, J. Optoelectronics and Advanced Materials, 2001, vol. 3, pp. 341–349.

    CAS  Google Scholar 

  62. Churbanov, M.F., Shiryaev, V.S., Suchkov, A.I., Pushkin, A.A., Gerasimenko, V.V., Shaposhnikov, R.M., Dianov, E.M., Plotnichenko, V.G., Koltashev, V.V., Pyrkov, Yu.N., Lucas, J., and Adam, J.-L., High-Purity As-S-Se and As-Se-Te Glasses and Optical Fibers, Inorg. Mat., 2007, vol. 43, no. 4, pp. 506–512.

    Google Scholar 

  63. Shiryaev, V.S., Ketkova, L.A., Churbanov, M.F., Potapov, A.M., Troles, J., Houizot, P., and Adam, J.-L., Heterophase Inclusions and Dissolved Impurities in Ge25Sb10S65 Glasses, J. Non-Cryst. Solids, 2009 (in press).

  64. Shiryaev, V.S., Adam, J.-L., Zhang, X.H., Boussard-Pledel, C., Lucas, J., and Churbanov, M.F., Infrared Fibers Based on Te-As-Se Glass System with Low Optical Losses, J. Non-Cryst. Solids, 2004, vol. 336, pp. 113–119.

    Article  CAS  Google Scholar 

  65. Troles, J., Shiryaev, V., Churbanov, M., Houizot, P., Brilland, L., Desevedavy, F., Charpentier, F., Pain, T., Snopatin, G., and Adam, J.-L., Preparation of Low Losses GeSe4 Fibers, Optical Materials, 2009 (in press).

  66. Snopatin, G.E., Matveeva, M.Yu., Churbanov, M.F., Krukova, E.B., and Plotnichenko, V.G., Izmenenie sostava stekloobrazuyushchikh rasplavov sistemy As-S pri vacuumnoi peregonke (Change in Composition of Glass-forming Melts of As-S System During Vacuum Distillation), Neorg. Mat., 2005, vol. 41, no. 2, pp. 246–249.

    Google Scholar 

  67. Snopatin, G.E., Churbanov, M.F., Devyatykh, G.G., Dianov, E.M., Plotnichenko, V.G., and Matveeva, M.Yu., Technique for Production of Pairs of High-Purity Glasses of As-S System for the Core and Cladding of Single-Mode and Multi-Mode Optical Fibers, RF Patent no. 2237030, 2003.

  68. De Sario, M., Mescia, L., Prudenzano, F., Smektala, F., Deseveday, F., Nazabal, V., Troles, J., and Brilland, L., Feasibility of Er3+-doped, Ga5Ge20Sb10S65 Chalcogenide Microstructured Optical Fiber Amplifiers, Optics Laser Technol., 2009, vol. 41, no. 1, pp. 99–106.

    Article  Google Scholar 

  69. Zheltikov, A.M., Microstructured Optical Fibers for New Generation of Fiber-optic Sources and Converters of Light Pulses, Usp. Fiz. Nauk, 2007, vol. 177, no. 7, pp. 737–762.

    Article  Google Scholar 

  70. Skripachev, I.V., Plotnichenko, V.G., Snopatin, G.E., Pushkin, A.A., and Churbanov, M.F., Production of Double-Layered Optical Fibers on the Basis of High-Purity Glasses of As-S, As-Se and Ge-As-Se Systems, Vysokochistye Veshchestva, 1994, no. 4, pp. 34–41.

  71. Churbanov, M.F., Pushkin, A.A., Gerasimenko, V.V., Suchkov, A.I., Polyakov, V.S., Koltashev, V.V., and Plotnichenko, V.G., Origin of Microinhomogeneities in As-S-Se Glass Fibers Fabricated by the Double-Crucible Method, Inorg. Mat., 2007, vol. 43, no. 4, pp. 436–440.

    Article  CAS  Google Scholar 

  72. Smectala, F., Le Foulgoc, K., Le Neindre, L., Blanchetiere, C., Zhang X.H., and Lucas, J., TeX-Glass Infrared Optical Fibers Delivering Medium Power from a CO2 Laser, Optical Materials, 1999, vol. 13, pp. 271–276.

    Article  Google Scholar 

  73. Sanghera, J., Aggarwal, I., Busse, L., Pureza, P., Nguyen, V., Miklos, R., Kung, F., and Mossadegh, R., Development of Low Loss IR Transmitting Chalogenide Glass Fibers, SPIE, 1995, vol. 2396, no. 5, pp. 71–77.

    Article  Google Scholar 

  74. Le Coq, D., Boussard-Pledel, C., Fonteneau, G., Pain, T., Bureau, B., and Adam, J.-L., A New Approach of Preform Fabrication for Chalcogenide Fibers, J. Non-Crystal. Solids, 2003, vols. 326, 327, pp. 451–454.

    Article  Google Scholar 

  75. Churbanov, M.F., Shaposhnikov, R.M., Snopatin, G.E., Shabarov, V.V., and Plotnichenko, V.G., Flow of Viscoplastic Arsenic Selenide Melt in Circular-Cylindrical Channels, Inorg. Mat., 2005, vol. 41, no. 11, pp. 1301–1306.

    Google Scholar 

  76. Churbanov, M.F., Shaposhnikov, R.M., Shabarov, V.V., Snopatin, G.E., and Plotnichenko, V.G., Flow of a Viscoplastic Arsenic Selenide Melt in Annular Channels, Inorg. Mat., 2006, vol. 42, no. 2, pp. 215–219.

    Article  CAS  Google Scholar 

  77. Vasil’ev, A.V. and Plotnichenko, V.G., Measurement of Optical Parameters of IR Optical Fibers, Kvant. Elektron., 1987, vol. 14, no. 4, pp. 827–833.

    Google Scholar 

  78. Churbanov, M.F., Shiryaev, V.S., Skripachev, I.V., Snopatin, G.E., Pimenov, V.G., Smetanin, S.V., Shaposhnikov, R.M., Fadin, I.E., Pyrkov, Yu.N., and Plotnichenko, V.G., High-Purity As2S1.5Se1.5 Glass Optical Fibers, Inorg. Mat., 2002, vol. 38, no. 2, pp. 193–197.

    Article  CAS  Google Scholar 

  79. Dianov, E.M., Plotnichenko, V.G., Pyrkov, Yu.N., Smol’nikov, I.V., Koleskin, S.B., Devyatykh, G.G., Churbanov, M.F., Snopatin, G.E., Skripachev, I.V., and Shaposhnikov, R.M., Single-Mode As-S Glass Fibers, Inorg. Mat., 2003, vol. 39, no. 7, pp. 627–630.

    Article  CAS  Google Scholar 

  80. Shiryaev, V.S., Boussard-Pledel, C., Houizot, P., Jouan, T., Adam, J.-L., and Lucas, J., Single-Mode Iinfrared Fibers Based on Te-As-Se Glass System, Mater. Sci. Eng. B, 2006, vol. 127, nos. 2, 3, pp. 138–143.

    Article  CAS  Google Scholar 

  81. Antipenko, A.G., Artem’ev, N.B., Betin, A.A., Kamenskii, V.A., Novikov, V.P., Plotnichenko, V.G., Skripachev, I.V., and Snopatin, G.E., Application of YAG:Erlaser with Chalcogenide Optical Fiber in Laser Surgery, Kvant. Elektron., 1995, vol. 22, pp. 523–526.

    CAS  Google Scholar 

  82. Churbanov, M.F., Shiryaev, V.S., Gerasimenko, V.V., Pushkin, A.A., Skripachev, I.V., Snopatin, G.E., and Plotnichenko, V.G., Stability of the Optical and Mechanical Properties of Chalcogenide Fibers, Inorg. Mat., 2002, vol. 38, no. 10, pp. 1063–1068.

    Article  CAS  Google Scholar 

  83. Svet, D.Ya., Kling, B.N., Devyatykh, G.G., Vasil’ev, A.V., Dianov, E.M., Plotnichenko, V.G., Skripachev, I.V., and Churbanov, M.F., Nizkotemperaturnyi pirometr s gibkim volokonnym svetovodom (Low-temperature Pyrometer with Flexible Optical Fiber), Prib. Sist. Uprav., 1985, no. 2, pp. 18, 19.

  84. Vasil’ev, A.V., Devyatykh, G.G., Dianov, E.M., Plotnichenko, V.G., Skripachev, I.V., Sysoev, V.K., and Churbanov, M.F., Ispol’zovanie IK volokonnykh svetovodov v pirometricheskikh izmereniyakh (Application of IR Optical Fibers in Pyrometric Measurements), Zh. Prikl. Spektrosk., 1985, vol. XLII, no. 5, pp. 862–864.

    Google Scholar 

  85. Devyatykh, G.G., Ivantsov, V.B., Lebedev, V.S., Lychev, V.V., Orlov, I.Ya., Plotnichenko, V.G., Skripachev, I.V., Snopatin, G.E., Solov’ev, V.M., and Churbanov, M.F., Optical Fiber IR Radiometer for Medical Diagnosis, High-Purity Substances, 1991, vol. 5, no. 1, pp. 188–191.

    Google Scholar 

  86. Saito, M., Takizawa, M., Sakuragi, S., and Tanei, F., Infrared Image Guide with Bundle As-S Glass Fibers, Appl. Opt., 1985, vol. 24, no. 9, p. 2304.

    Article  CAS  Google Scholar 

  87. Suto, H., Chalcogenide Fiber Bundle for 3D Spectroscopy, Infrared Phys. Technol., 1997, vol. 38, p. 93.

    Article  CAS  Google Scholar 

  88. Sanghera, J.N. and Aggarwal, I.D., Active and Passive Chalcogenide Glass Optical Fibers for IR Applications: A Review, J. Non-Cryst. Solids, 1999, vols. 256, 257, pp. 6–16.

    Article  Google Scholar 

  89. Sanghera, J.S., Kung, F.H., Busse, L.E., Pureza, P.C., and Aggarwal, I.D., Infrared Evanescent Absorption Spectroscopy of Toxic Chemicals using Chalcogenide Glass Fibers, J. Am. Ceram. Soc., 1995, vol. 78, pp. 2198–2202.

    Article  CAS  Google Scholar 

  90. Nau, G., Bucholtz, F., Ewing, K.J., Vohra, S.T., Sanghera, J.S., and Aggarwal, I.D., Fiber Optic Sensor System for Detection of Organic Contaminations in Soil, SPIE, 1996, vol. 2883, p. 682.

    CAS  Google Scholar 

  91. Hocde, S., Boussard-Pledel, C., Fonteneau, G., and Lucas, J., Chalcogenide Based Glasses for IR Fiber Chemical Sensors, Solid States Sci., 2001, vol. 3, no. 3, pp. 279–284.

    Article  CAS  Google Scholar 

  92. Zasavitskii, I.I., Maksimov, G.B., Radionov, A.R., Skripachev, I.V., Stepanov, E.B., Khorshev, V.A., Shipunov, V.A., and Shchapin, S.M., Sistema kriostatirovaniya poluprovodnikovogo lazera s vylhodom izlucheniya po volokonnomu IK-svetovodu (Cryostatination System of Semiconductor Laser with Radiation Yield via IR Optical Fiber), Vysokochistye Veshchestva, 1987, no. 5, pp. 202–204.

  93. Kuznetsov, A.I., Nadezshdinskii, A.I., Moskalenko, K.L., Stepanov, E.V., Davarashvilli, O.I., Zasavitskii, I.I., Plotnichenko, V.G., and Artjushenko, V.G., Tunable Diode Laser Spectroscopy Accessories Based on Middle IR Halide and Chalcogenide Fibers, Proc. SPIE, 1993, vol. 1724, pp. 104–118.

    Article  Google Scholar 

  94. Stepanov, E.V., Kouznetsov, A.L., Zyrianov, P.V., Plotnichenko, V.G., Selivanov, Yu.G., and Artjushenko, V.G., Multicomponent Fiber-Optical Gas Sensor Based on MIR Tunable Diode Lasers, Infrared Phys. Technol., 1996, vol. 37, pp. 149–153.

    Article  CAS  Google Scholar 

  95. Nishii, J., Morimoto, S., Inagawa, I., Iizuka, R., Yamashita, T., and Yamagishi, T., Recent Aadvances and Trends in Chalcogenide Glass Fiber Technology: A Review, J. Non-Cryst. Solids, 1992, vol. 140, pp. 199–208.

    Article  CAS  Google Scholar 

  96. Churbanov, M.F., Scripachev, I.V., Shiryaev, V.S., Plotnichenko, V.G., Smetanin, S.V., Kryukova, E.B., Pyrkov, Yu.N., and Galagan, B.I., Chalcogenide Glasses Doped with Tb, Dy and Pr Ions, J. Non-Cryst. Solids, 2003, vols. 326, 327, pp. 301–305.

    Article  Google Scholar 

  97. Mori, A., Ohishi, Y., Kanamori, T., and Sudo, S., Optical Amplification with Neodymium-Doped Chalcogenide Glass Fiber, Appl. Phys. Lett., 1997, vol. 70, p. 1230.

    Article  CAS  Google Scholar 

  98. Cole, B., Shaw, L.B., Pureza, P.C., Mossadegh, R., Sanghera, J.S., and Aggarwal, I.D., Rare-Earth Doped Selenide Glasses and Fibers for Active Applications in the Near and Mid-IR, J. Non-Cryst. Solids, 1999, vols. 256, 257, pp. 253–259.

    Article  Google Scholar 

  99. Asobe, M., Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching, Optical Fiber Technology, 1997, vol. 3, pp. 142–148.

    Article  Google Scholar 

  100. Zakery, A. and Elliot, S.R., Optical Nonlinearities in Chalcogenide Glasses and Their Application, Heidelberg: Springer, 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Churbanov.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snopatin, G.E., Shiryaev, V.S., Plotnichenko, V.G. et al. High-purity chalcogenide glasses for fiber optics. Inorg Mater 45, 1439–1460 (2009). https://doi.org/10.1134/S0020168509130019

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168509130019

Keywords

Navigation