Skip to main content
Log in

Volume dependence of the bulk modulus of inorganic substances

  • Published:
Inorganic Materials Aims and scope

Abstract

An equation describing the change in the bulk modulus with the variation of the volume under high pressure or temperature is derived. It is shown that the derivatives ∂B/∂V for 56 metals and 120 ionic crystals MX (X = H, F, Cl, Br, I) vary from 4.2 to 5.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holzapfel, W.B. Equations of state for Solids under Strong Compressions, Z.Kristallogr. Sect. B 2001. V. 216 no. 9. pp. 473–488.

    Article  CAS  Google Scholar 

  2. Vinet, P., Ferrante, J., Rose, J.H. Compressibility of Solids, J.Geophys. Res. B. 1987. V. 92. no. 9. pp. 9319–9325

    Article  Google Scholar 

  3. Batsanov, S.S., Structural Chemistry. Facts and Dependencies. M. MSU, 2000.

  4. Batsanov, S.S., Change of Nature of the Chemical Bond under Compression of Cristals, J. Str. Chem. 2005, V. 46. no 2. pp.314–322.

    Google Scholar 

  5. Cohen, M.L., Theory of Bulk Moduli of Hard Solids, Mater. Sci. Eng., A. 1988. V. 105/106. no 1. pp. 11–18.

    Google Scholar 

  6. Batsanov, S.S., Volume Elasticity Moduli of Cristalic Nonorganic Materials, Nonorg. Mat. 1999. V. 35. no. 9. pp.1144–1149.

    Google Scholar 

  7. Anderwson, O.L., Derivation of Wachtman’s Equation for the Temperature Dependence of Elastic Moduli of Oxide Compound, Phys. Rev. 1966. V. 144. no. 2. pp. 553–557.

    Article  Google Scholar 

  8. Holzapfel, W.B., Hartwig, M., Sievers, W., Equations of State for Cu, Ag, and Au for Wide Rages in Temperature and Pressure up to 500 GPa and Above, J.Phys. Chem. Ref. Data. 2001. V. 30. no. 2. pp. 515–529.

    Article  CAS  Google Scholar 

  9. Takemura, K., Bulk Modulus of Osmium: High-Pressure Powder x-Ray Diffraction Experiments under Quasihydrostatic Conditions, Phys. Rev. B. 2004. V. 70. pp. 012101.

    Article  CAS  Google Scholar 

  10. Makino, Y., Empirical Determination of Bulk Modulus of Elemenetal Substances by Pseudopotential Radius, J.Alloys Compd. 1996. V. 242. no. 1–2. pp. 122–128.

    Article  Google Scholar 

  11. Novikova, S.I., Thermal expansion of Solids. M.: Nauka, 1974.

    Google Scholar 

  12. Properties of Elements/Edd. Drits, M.E., M.: Ore and Metals, 2003.

  13. Vinet, P., Rose, J.H., Ferrante, J., Smith, J.R., Universal Featires of the Equation of State of Solids, J. Phys. Condens. Matter. 1989. V.1. no.11. pp.1941–1963.

    Article  Google Scholar 

  14. Simmons, G., Single Crystal Elastic Constants and Calculated Aggregate Proiperties, J.Grad. Res.Cent. 1965. V. 24. no. 1–2. pp. 1–269.

    Google Scholar 

  15. Ledbetter, H., Migliori, A., Betts, J., et al. Zero-Temperature Bulk Modulus of Alfa-Plutonium, Phys. Rev. B. 2005. V. 71. pp. 172101.

    Article  CAS  Google Scholar 

  16. Ledbetter, H., Ogi, H., Kai, S., Kim, S. Elastic Constants of Body-Centered-Cubic Titanium Monocrystals, J.Appl. Phys. 2004. V. 95. no. 9. pp. 4642–4644.

    Article  CAS  Google Scholar 

  17. Featherston, F.H., Neighbours, J.R., Elastic Constants of Ta, W, and Mo, Phys. Rev. 1963. V. 130. no. 4. pp.1324–1333.

    Article  Google Scholar 

  18. Duffy, Th.S., Ahrens, Th.J., Dynamic Response of Molybdenum Shock Compressed at 1400°C, J.Appl. Phys. 1994. V. 76. no. 2. pp. 835–842.

    Article  Google Scholar 

  19. Adams, J.J., Agosta, D.S., Leisure, R.G., Ledbetter, H., Elastics Constants of Monocrystal Iron from 3 to 500K, J. Appl. Phys. 2006. V. 100. pp.113530.

    Article  CAS  Google Scholar 

  20. Cağin, T., Pettitt, B.M., Elastic Constants of Nickel: Variations with Respect to Temperature and Pressure, Phys. Rev. B. 1989. V. 39. no.17. pp. 12484–12491.

    Article  Google Scholar 

  21. Ehm, I., Knorr, K., Dera, P. et al., Pressure-Induced Structural Phase Transition in the IV–VI Semiconductors, J. Phys. Condens. Matter. 2004. V. 16. no. 2. pp. 3545–3554.

    Article  CAS  Google Scholar 

  22. Onodera, A., Mimasaka, M., Sakamot, I., et al., Structural and Electrical Properties of NiAs-type Compounds under Pressure, J.Phys. Chem. Solids. 1999. V. 60. no.2. pp.167–179.

    Article  Google Scholar 

  23. Vaitheeswaran, G., Kanchana, V., Heathman, S., et al., Elastic Constants and High-Pressure Structural Transitions in Lanthanum Monochalcogenides from Experiment and Theory, Phys. Rev. B. 2007. V. 75. pp. 184108.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S. S. Batsanov, 2009, published in Neorganicheskie Materialy, 2009, Vol. 45, No. 4, pp. 509–512.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batsanov, S.S. Volume dependence of the bulk modulus of inorganic substances. Inorg Mater 45, 457–460 (2009). https://doi.org/10.1134/S0020168509040244

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168509040244

Keywords

Navigation