Skip to main content
Log in

Compensation mechanism for hole conduction in ZnO:N films

  • Published:
Inorganic Materials Aims and scope

Abstract

One possible compensation mechanism for hole conduction in ZnO:N crystals has been examined using the quasi-chemical approach. The results indicate that, under equilibrium annealing or growth conditions, p-type ZnO:N crystals are difficult to obtain because holes are compensated by V O vacancies and (V O − NO)· defect complexes. The theoretical predictions correlate with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogozin, I.V., Georgobiani, A.N., and Kotlyarevsky, M.B., Fabrication of p−n Junctions in ZnO by Arsenic Ion Implantation Followed by Annealing in Atomic Oxygen, Neorg. Mater., 2007, vol. 43, no. 7, pp. 808–813 [Inorg. Mater. (Engl. Transl.), vol. 43, no. 7, pp. 714–719].

    Article  CAS  Google Scholar 

  2. Pearton, S.J., Norton, D.P., Ip, K., et al., Recent Progress in Processing and Properties of ZnO, Prog. Mater. Sci., 2005, vol. 50, pp. 293–340.

    Article  CAS  Google Scholar 

  3. Park, R.M., Troffer, M.B., Rouleau, C.M., et al., p-Type ZnSe by Nitrogen Atom Beam Doping during Molecular Beam Epitaxial Growth, Appl. Phys. Lett., 1990, vol. 57, pp. 2127–2129.

    Article  CAS  Google Scholar 

  4. Ishibashi, A., II–VI Blue-Green Light Emitters, J. Cryst. Growth, 1996, vol. 159, pp. 555–565.

    Article  CAS  Google Scholar 

  5. Look, D.C., Reynolds, D.C., Litton, C.W., et al., Characterization of Homoepitaxial p-Type ZnO Grown by Molecular Beam Epitaxy, Appl. Phys. Lett., 2002, vol. 81, pp. 1830–1832.

    Article  CAS  Google Scholar 

  6. Wang, D., Liu, Y.C., Mu, R., et al., The Photoluminescence Properties of ZnO:N Films Fabricated by Thermally Oxidizing Zn3N2 Films Using Plasma-Assisted Metal-Organic Chemical Vapour Deposition, J. Phys: Condens. Matter, 2004, vol. 16, pp. 4635–4642.

    Article  CAS  Google Scholar 

  7. Xiao, Z.Y., Liu, Y.C., Li, B.H., et al., Electrical Transport Properties in Nitrogen-Doped p-Type ZnO Thin Film, Semicond. Sci. Technol., 2006, vol. 21, pp. 1522–1526.

    Article  CAS  Google Scholar 

  8. Zhang, S.B., Wei, S.-H., and Zunger, A., Intrinsic n-Type versus p-Type Doping Asymmetry and the Defect Physics of ZnO, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 63, article 75 205.

  9. Kröger, F.A., The Chemistry of Imperfect Crystals, Amsterdam: North-Holland, 1964.

    Google Scholar 

  10. Minami, T., Sato, H., Nanto, H., and Takata, S., Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering, Jpn. J. Appl. Phys., Part 2, 1985, vol. 24, pp. L781–L784.

    Article  Google Scholar 

  11. Kohan, A.F., Ceder, G., Morgan, D., and Van de Walle, C.G., First-Principles Study of Native Point Defects in ZnO, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 61, pp. 15 019–15 027.

    CAS  Google Scholar 

  12. Mollwo, E., Über den Zusammenhang zwischen der elektrischen Dunkelleitfähigkeit und der grünen Luminszenz von ZnO-Kristallen, Z. Phys., 1961, vol. 162, pp. 557–569.

    Article  CAS  Google Scholar 

  13. Zelikin, Ya.M., On the Nature of the Visible Luminescence Bands of Zinc, Vestn. Leningr. Univ., 1966, vol. 10, pp. 51–60.

    Google Scholar 

  14. Vanheusden, K., Seager, C.H., Warren, W.L., et al., Correlation between Photoluminescence and Oxygen Vacancies in ZnO Phosphors, Appl. Phys. Lett., 1996, vol. 68, pp. 403–405.

    Article  CAS  Google Scholar 

  15. Kuz’mina, I.P. and Nikitenko, V.A., Okis’ tsinka. Poluchenie i opticheskie svoistva (Preparation and Optical Properties of Zinc Oxide), Moscow: Nauka, 1984.

    Google Scholar 

  16. Vlasenko, L.S. and Watkins, G.D., Intrinsic Defects in ZnO: A Study Using Optical Detection of Electron Paramagnetic Resonance, Phys. B (Amsterdam, Neth.), 2006, vols. 376–377, pp. 677–681.

    Google Scholar 

  17. Janotti, A. and Van de Walle, C.G., New Insights into the Role of Native Point Defects in ZnO, J. Cryst. Growth, 2006, vol. 287, pp. 58–65.

    Article  CAS  Google Scholar 

  18. Zhao, J.-L., Zhang, W., Li, X.-M., et al., Convergence of the Formation Energies of Intrinsic Point Defects in Wurtzite ZnO: First-Principles Study by Projector Augmented Wave Method, J. Phys.: Condens. Matter, 2006, vol. 18, pp. 1495–1508.

    Article  CAS  Google Scholar 

  19. Lin, B., Fu, Z., and Jia, Y., Green Luminescent Center in Undoped Zinc Oxide Films Deposited on Silicon Substrates, Appl. Phys. Lett., 2001, vol. 79, pp. 943–945.

    Article  CAS  Google Scholar 

  20. Xu, P.-S., Sun, Y.-M., Shi, C.-S., et al., Native Point Defect States in ZnO, Chin. Phys. Lett., 2001, vol. 18, pp. 1252–1253.

    Article  Google Scholar 

  21. Oba, F., Nishitani, S.R., Isotani, S., et al., Energetics of Native Defects in ZnO, J. Appl. Phys., 2001, vol. 90, pp. 24–828.

    Google Scholar 

  22. Erhart, P., Albe, K., and Klein, A., First-Principles Study of Intrinsic Point Defects in ZnO: Role of Band Structure, Volume Relaxation, and Finite-Size Effects, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, article 205 203.

  23. Simpson, J.C. and Cordaro, J.F., Characterization of Deep Levels in Zinc Oxide, J. Appl. Phys., 1988, vol. 63, pp. 1781–1783.

    Article  CAS  Google Scholar 

  24. Gavryushin, V., Račinkaitis G., Juodžbalis, D., et al., Characterization of Intrinsic and Impurity Deep Levels in ZnSe and ZnO Crystals by Nonlinear Spectroscopy, J. Cryst. Growth, 1994, vol. 138, pp. 924–933.

    Article  CAS  Google Scholar 

  25. Sukkar, M.H. and Tuller, H.L., Defect Equilibria in ZnO Varistor Materials, Adv. Ceram., 1983, vol. 7, pp. 71–90.

    CAS  Google Scholar 

  26. Look, D.C., Reynolds, D.C., Sizelove, J.R., et al., Electrical Properties of Bulk ZnO, Solid State Commun., 1998, vol. 105, pp. 399–401.

    Article  CAS  Google Scholar 

  27. Look, D.C., Hemsky, J.W., and Sizelove, J.R., Residual Native Shallow Donor in ZnO, Phys. Rev. Lett., 1999, vol. 82, pp. 2552–2555.

    Article  CAS  Google Scholar 

  28. Sun, Y. and Wang, H., The Electronic Properties of Native Interstitials in ZnO, Phys. B (Amsterdam, Neth.), 2003, vol. 325, pp. 157–163.

    CAS  Google Scholar 

  29. Li, J., Wei, S.-H., Li, S.-S., and Xia, J.-B., Design of Shallow Acceptors in ZnO: First-Principles Band-Structure Calculations, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, article 081 201.

  30. Tuomisto, F., Ranki, V., Saarinen, K., and Look, D.C., Evidence of the Zn Vacancy Acting As the Dominant Acceptor in n-Type ZnO, Phys. Rev. Lett., 2003, vol. 91, article 205 502.

  31. Fang, Z.-Q., Claflin, B., Look, D.C., and Farlow, G.C., Electron Irradiation Induced Deep Centers in Hydrothermally Grown ZnO, J. Appl. Phys., 2007, vol. 101, article 086 106.

  32. Zubiaga, A., Garcia, J.A., Plazaola, F., et al., Correlation between Zn Vacancies and Photoluminescence Emission in ZnO Films, J. Appl. Phys., 2006, vol. 99, article 053 516.

  33. Georgobiani, A.N., Kotlyarevsky, M.B., Kidalov, V.V., et al., Luminescence of Native-Defect p-Type ZnO, Neorg. Mater., 2001, vol. 37, no. 11, pp. 1287–1291 [Inorg. Mater. (Engl. Transl.), vol. 37, no. 11, pp. 1095–1098].

    Article  Google Scholar 

  34. Ma, Y., Du, G.T., Yang, S.R., et al., Control of Conductivity Type in Undoped ZnO Thin Films Grown by Metalorganic Vapor Phase Epitaxy, J. Appl. Phys., 2004, vol. 95, pp. 6268–6272.

    Article  CAS  Google Scholar 

  35. Zeng, Y.J., Ye, Z.Z., Xu, W.Z., et al., p-Type Behavior in Nominally Undoped ZnO Thin Films by Oxygen Plasma Growth, Appl. Phys. Lett., 2006, vol. 88, article 262103.

  36. Wei, X., Man, B., Xue, C., et al., Blue Luminescent Center and Ultraviolet-Emission Dependence of ZnO Films Prepared by Pulsed Laser Deposition, Jpn. J. Appl. Phys., 2006, vol. 45, pp. 8586–8591.

    Article  CAS  Google Scholar 

  37. Rogozin, I.V., Radical-Beam Gettering Epitaxy of ZnO:N Films, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 2007, vol. 41, pp. 924–927.

    Google Scholar 

  38. Mahan, G.D., Intrinsic Defects in ZnO Varistors, J. Appl. Phys., 1983, vol. 54, pp. 3825–3832.

    Article  CAS  Google Scholar 

  39. Nikitenko, V.A., Stenli, S.A., and Morozova, N.K., Diagrams of Native-Point-Defect Equilibria and Deviations from Stoichiometry in Zinc Oxide, Izv. Akad. Nauk SSSR, Neorg. Mater., 1988, vol. 24, no. 11, pp. 1830–1835.

    CAS  Google Scholar 

  40. Bonasewicz, P., Hirschwald, W., and Neumann, G., The Investigation of the Pressure and Temperature Dependence of the Electrical Conductivity of Thin Zinc Oxide Films with High Resistances, Phys. Status Solidi A, 1986, vol. 97, pp. 593–599.

    Article  CAS  Google Scholar 

  41. Georgobiani, A.N., Kotlyarevsky, M.B., and Rogozin, I.V., Methods of High-Energy Chemistry in the Technology of Wide-Gap Chalcogenide Semiconductors, Inorg. Mater., 2004, vol. 40, suppl. 1, pp. S1–S18.

    Article  CAS  Google Scholar 

  42. Lee, E.-Ch., Kim, Y.-S., Jin, Y.-G., and Clang, K.J., Compensation Mechanism for N Acceptor in ZnO, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 64, article 085 120.

  43. Look, D.C., Farlow, G.C., Reunchan, P., et al., Evidence for Native-Defect Donors in n-Type ZnO, Phys. Rev. Lett., 2005, vol. 95, article 225 502.

  44. Gurvich, A.M. and Katomina, R.V., Thermodynamic Analysis of Defect Formation in ZnS-Cl and CdS-Cl Luminescent Crystals, Zh. Fiz. Khim., 1969, vol. 43, pp. 72–79.

    CAS  Google Scholar 

  45. Desgardin, P., Oila, J., Saarinen, K., et al., Native Vacancies in Nitrogen-Doped and Undoped ZnSe Layers Studied by Positron Annihilation, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 62, pp. 15 711–15 717.

    CAS  Google Scholar 

  46. Aliev, G.N., Bingham, S.J., Davies, J.J., et al., Optically Detected Magnetic Resonance of Epitaxial Nitrogen-Doped ZnO, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 70, article 115 206.

  47. Georgobiani, A.N., Gruzintsev, A.N., Volkov, V.T., and Vorob’ev, M.O., Effect of Annealing in Oxygen Radicals on the Luminescence and Electrical Conductivity of ZnO:N Films, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 2002, vol. 36, no. 3, pp. 284–288.

    Google Scholar 

  48. Rogozin, I.V., X-Ray Photoelectron Spectroscopy of ZnO Films Grown on Zinc Chalcogenide Substrates, Poverkhnost, 2006, no. 11, pp. 49–53.

  49. Iwata, K., Fons, P., Yamada, A., et al., Nitrogen-Induced in ZnO:N Grown on Sapphire Substrate by Gas Source MBE, J. Cryst. Growth, 2000, vol. 209, pp. 526–531.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Rogozin.

Additional information

Original Russian Text © I.V. Rogozin, A.N. Georgobiani, M.B. Kotlyarevsky, A.V. Marakhovskii, 2009, published in Neorganicheskie Materialy, 2009, Vol. 45, No. 4, pp. 440–448.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogozin, I.V., Georgobiani, A.N., Kotlyarevsky, M.B. et al. Compensation mechanism for hole conduction in ZnO:N films. Inorg Mater 45, 391–398 (2009). https://doi.org/10.1134/S0020168509040116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168509040116

Keywords

Navigation