Skip to main content
Log in

Effect of the concentration of carbonate groups in a carbonate hydroxyapatite ceramic on its in vivo behavior

  • Published:
Inorganic Materials Aims and scope

Abstract

Carbonate-substituted hydroxyapatites containing up to 9 wt % of carbonate groups were synthesized and fabricated in the form of porous granules with a view to developing materials for use in bone tissue repairs. The use of sintering additives forming a liquid phase allowed the granule sintering temperature to be reduced by 400–450°C. It was found that the carbonate groups enter into the structure of the ceramic by a mixed AB-type substitution; the microstructure of the granules depends substantially on the concentration of the carbonate groups; introduction of 6 wt % of carbonate groups into apatite ensures high biological properties of the granules in experiments in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LeGeros, R.Z., Tung, M.S., Chemica Stability of Carbonate- and Fluoride-Containing Apatites, Caries Res., 1983, vol. 17, pp. 419–429.

    Article  CAS  Google Scholar 

  2. Dziedzic, D.M., Savva, I.H., Wilkinson, D.S., Davies, J.E., Osteoconduction on, and Bonding to, Calcium Phosphate Ceramic Implants, Proc. Symp. Mater. Res. Soc., 1996, vol. 414, pp. 147–156.

    CAS  Google Scholar 

  3. Hasegava, M., Sudo, A., Komlev, V.S., et al. High Release of Antibiotic from a Novel Hydroxyapatite with Bimodal Pore Size Distribution, Biomed. Mater. Res., Part B: Appl. Biomater., 2004, vol. 70, pp. 332–339.

    Article  CAS  Google Scholar 

  4. Komlev, V.S., Barinov, S.M., Porous Hydroxyapatite Ceramics of Bi-Modal Pore Size Distribution, J. Mater. Sci.: Mater. Med., 2002, vol. 13, pp. 295–299.

    Article  CAS  Google Scholar 

  5. Komlev, V.S., Peryn, F., Mastrogiacomo, M. et al, Kinetics of in ivo Bone Deposition by Bone Marrow Stromal Cells into Porous Calcium Phosphate Scaffolds; an x-ray Computed Microtomography Study, Tissue Eng., 2006, vol. 12, pp. 3449–3458.

    Article  CAS  Google Scholar 

  6. Ong, J.L., Hoppe, C.A., Cardenas, H.L. et al., Osteoblast Cell Activity on HA surfaces of Different Treatments, J. Biomed. Mater. Res., 1998, vol. 39, pp. 176–183.

    Article  CAS  Google Scholar 

  7. Barinov, S.M., Komlev, V.S., Biokeramika na osnove fosfatov kal’tsiya (Bioceramic Based on Calcium Phosphate), Moscow: Nauka, 2005.

    Google Scholar 

  8. Murugan, R., Sampath, T., Yang, F., Ramakrishna, S., Hydroxyl Carbonapatite Hybrid Bone Composites Using Carbohydrate Polymer, J. Compos. Mater., 2005, vol. 39, pp. 1159–1166.

    Article  CAS  Google Scholar 

  9. LeGeros, R.Z., Trautz, O.R., LeGeros, J.P. et al., Apatite Crystallites: Effects of Carbonate on Morphology, Science, 1967, vol. 155, pp. 1409–1411.

    Article  Google Scholar 

  10. Porter, A., Patel, N., Brooks, R. et al., Effect of Carbonate Substitution on the Ultrastructural Characteristics of Hydroxyapatite Implants, J. Mater. Sci. Mater. Med., 2005, vol. 16., pp. 899–907.

    Article  CAS  Google Scholar 

  11. Kruyt, M.C., de Bruijn, J.D., Yuan, H. et al., Optimization of Bone Tissue Engineering in Goats: a Perforative Seeding Method Using Cryopreserved Cells and Localized Bone Formation in Calcium Phosphate Scaffolds, Transplantation, 2004, vol. 77, pp. 359–365.

    Article  Google Scholar 

  12. Radin, S.R., Ducheyne, P., The Effect of Calcium-Phosphate Ceramic Composition and Structure on in vitro Behavior. II. Precipitation, J. Biomed. Mater. Res., 1993, vol. 27, pp. 35–45.

    Article  CAS  Google Scholar 

  13. Hing, K., Bone Repair in the Twenty-First Century: Biology, Chemistry of Engineering? Phil. Trans. R. Soc. London A, 2004, vol. 362, pp. 2821–2850.

    Article  CAS  Google Scholar 

  14. Merry, J.C., Gibson, I.R., Best, S.M. et al., Synthesis and Characterization of Porous Hydroxyapatite, J. Mater. Sci. Mater. Med., 1998, vol. 9, no. 12, pp. 779–783.

    Article  CAS  Google Scholar 

  15. Tsuruga, E., Takita, H., Itoh, H. et al., Pore Size of Porous Hydroxyapatite as the Cell-Substratum Controls BMP-Induced Osteogenesis, J. Biochem., 1997, vol. 121, pp. 317–324.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Komlev.

Additional information

Original Russian Text © V.S. Komlev, I.V. Fadeeva, A.N. Gurin, E.S. Kovaleva, V.V. Smirnov, N.A. Gurin, S.M. Barinov, 2009, published in Neorganicheskie Materialy, 2009, Vol. 45, No. 3, pp. 373–378.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komlev, V.S., Fadeeva, I.V., Gurin, A.N. et al. Effect of the concentration of carbonate groups in a carbonate hydroxyapatite ceramic on its in vivo behavior. Inorg Mater 45, 329–334 (2009). https://doi.org/10.1134/S0020168509030194

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168509030194

Keywords

Navigation