Skip to main content
Log in

Electronic structure and properties of beryllium oxide

  • Published:
Inorganic Materials Aims and scope

Abstract

This review focuses on computer simulation studies of the nature of chemical bonding in BeO and its electronic structure and physicochemical properties. The capabilities of modern quantum-chemical methods are analyzed with application to various structural defects in BeO, phase equilibria in the Be-O system, pressure-induced polymorphic transformations of BeO, and its mechanical, thermal, and spectroscopic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belyaev, R.A., Okis’ berilliya (Beryllium Oxide), Moscow: Atomizdat, 1980.

    Google Scholar 

  2. Makurin, Yu.N., Kiiko, V.S., and Ivanovskii, A.L., Keramika na osnove oksida berilliya: poluchenie, fizikokhimicheskie svoistva i primeneniya (Beryllium Oxide Ceramics: Fabrication, Physicochemical Properties, and Applications), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2006.

    Google Scholar 

  3. Gubanov, V.A., Kurmaev, E.Z., and Ivanovskii, A.L., Kvantovaya khimiya tverdogo tela (Quantum Chemistry of Solids), Moscow: Nauka, 1984.

    Google Scholar 

  4. Gubanov, V.A., Ivanovskii, A.L., and Ryzhkov, M.V., Kvantovaya khimiya v materialovedenii (Quantum Chemistry in Materials Research), Moscow: Nauka, 1987.

    Google Scholar 

  5. Ivanovskii, A.L., Gubanov, V.A., and Shveikin, G.P., Elektronnaya struktura gidridov metallov (Electronic Structure of Metal Hydrides), Sverdlovsk: Ural. Otd. Akad. Nauk SSSR, 1987.

    Google Scholar 

  6. Anisimov, V.I., Antropov, V.N., Gubanov, V.A., et al., Elektronnaya struktura defektov i primesei v metallakh, splavakh i soedineniyakh (Electronic Structure of Defects and Impurities in Metals, Alloys, and Compounds), Moscow: Nauka, 1989.

    Google Scholar 

  7. Ivanovskii, A.L., Zhukov, V.P., and Gubanov, V.A., Elektronnoe stroenie tugoplavkikh karbidov i nitridov perekhodnykh metallov (Electronic Structure of Refractory Transition-Metal Carbides and Nitrides), Moscow: Nauka, 1990.

    Google Scholar 

  8. Gubanov, V.A., Likhtenshtein, A.I., and Postnikov, A.V., Magnetizm i khimicheskaya svyaz’ v kristallakh (Magnetism and Chemical Bonding in Crystals), Moscow: Nauka, 1992.

    Google Scholar 

  9. Gubanov, V.A., Ivanovskii, A.L., and Zhukov, V.P., Electronic Structure of Refractory Metal Carbides and Nitrides, Cambridge: Cambridge Univ. Press, 1994.

    Google Scholar 

  10. Ivanovskii, A.L., Gusev, A.I., and Shveikin, G.P., Kvantovaya khimiya v materialovedenii. Troinye karbidy i nitridy perekhodnykh metallov i elementov IIIb, IVb podgrupp (Quantum Chemistry in Materials Research: Ternary Carbides and Nitrides of Transition Metals and Group IIIB and IVB Elements), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 1996.

    Google Scholar 

  11. Ivanovskii, A.L. and Shveikin, G.P., Kvantovaya khimiya v materialovedenii. Bor, ego splavy i soedineniya (Quantum Chemistry in Materials Research: Boron, Its Alloys and Compounds), Yekaterinburg: Ekaterinburg, 1998.

    Google Scholar 

  12. Ivanovskii, A.L., Kvantovaya khimiya v materialovedenii. Nanotubulyarnye formy veshchestva (Quantum Chemistry in Materials Research: Nanotubular Materials), Yekaterinburg: Ekaterinburg, 1999.

    Google Scholar 

  13. Zakharova, G.S., Volkov, V.L., Ivanovskaya, V.V., and Ivanovskii, A.L., Nanotrubki i rodstvennye nanostruktury oksidov metallov (Nanotubes and Related Nanostructures of Metal Oxides), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2005.

    Google Scholar 

  14. Chang, K.J., Froyen, S., and Cohen, M.L., The Electronic Band Structures for Zincblende and Wurtzite BeO, J. Phys. C: Solid State Phys., 1983, vol. 16, pp. 3475–3480.

    Article  CAS  Google Scholar 

  15. Chang, K.J. and Cohen, M.L., Theoretical Study of BeO: Structural and Electronic Properties, Solid State Commun., 1984, vol. 50, pp. 487–491.

    Article  CAS  Google Scholar 

  16. Hazen, R.M. and Finger, L.W., High-Pressure and High-Temperature Crystal Chemistry of Beryllium Oxide, J. Appl. Phys., 1986, vol. 59, pp. 3728–3733.

    Article  CAS  Google Scholar 

  17. Sabine, T.M. and Hogg, S., The Wurtzite Z Parameter for Beryllium Oxide and Zinc Oxide, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25, pp. 2254–2256.

    Article  CAS  Google Scholar 

  18. Vidal-Valat, G., Vidal, J.P., Kurki-Suonio, K., and Kurki-Suonio, R., Multipole Analysis of x-Ray Diffraction Data on BeO, Acta Crystallogr., Sect. A: Found. Crystallogr., 1987, vol. 43, pp. 540–550.

    Article  Google Scholar 

  19. Downs, J.W., Ross, F.K., and Gibbs, V.G., The Effects of Extinction on the Refined Structural Parameters of Crystalline BeO: A Neutron and X-Ray Diffraction Study, Acta Crystallogr., Sect. B: Struct. Sci., 1985, vol. 41, pp. 425–431.

    Article  Google Scholar 

  20. Novik, V.K., Gavrilova, N.D., and Fel’dman, N.B., Piroelektricheskie preobrazovateli (Pyroelectric Converters), Moscow: Sovetskoe Radio, 1979.

    Google Scholar 

  21. Noel, Y., Zicovich-Wilson, C.M., Civalleri, B., et al., Polarization Properties of ZnO and BeO: An Ab-Initio Study through the Berry Phase and Wannier Functions Approaches, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 65, no. 1, pp. 014 111–014 120.

    Google Scholar 

  22. Xu, Y.N. and Ching, W.Y., Electronic, Optical, and Structural Properties of Some Wurtzite Crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 1993, vol. 48, no. 7, pp. 4335–4351.

    CAS  Google Scholar 

  23. Lichanot, A., Chaillet, M., Larrieu, M., et al., Abinitio Hartree-Fock Study of Solid Beryllium Oxide-Structure and Electronic Properties, Chem. Phys., 1992, vol. 164, no. 3, pp. 383–394.

    Article  CAS  Google Scholar 

  24. Lambrecht, W. and Segall, B., Electronic Structure and Total Energy of Diamond BeO Interfaces, J. Mater. Res., 1992, vol. 7, no. 3, pp. 696–705.

    Article  CAS  Google Scholar 

  25. Kulyabin, B.E., Lobach, V.A., and Kruzalov, A.V., Band Structure and Parameters of the Ground State of BeO, Fiz. Tverdogo Tela (S.-Peterburg), 1990, vol. 32, no. 12, pp. 3685–3687.

    CAS  Google Scholar 

  26. Van Camp, P.E. and Van Doren, V., Ground-State Properties and Structural Phase Transformation of Beryllium Oxide, J. Phys.: Condens. Matter, 1996, vol. 8, no. 19, pp. 3385–3390.

    Article  Google Scholar 

  27. Milman, V. and Warren, M.C., Elasticity of Hexagonal BeO, J. Phys.: Condens. Matter, 2001, vol. 13, no. 2, pp. 241–251.

    Article  CAS  Google Scholar 

  28. Sashin, V.A., Dorsett, H.E., Bolorizadeh, M.A., and Ford, M.J., The Valence Band Structures of BeO, MgO, and CaO, J. Chem. Phys., 2000, vol. 113, no. 18, pp. 8175–8182.

    Article  CAS  Google Scholar 

  29. De Bas, B.S., Dorsett, H.E., and Ford, M.J., The Electronic Structure of Be and BeO: Benchmark EMS Measurements and LCAO Calculations, J. Phys. Chem. Solids, 2003, vol. 64, no. 3, pp. 495–505.

    Article  Google Scholar 

  30. Sashin, V.A., Bolorizadeh, M.A., Kheifets, A.S., and Ford, M.J., Electronic Band Structure of Beryllium Oxide, J. Phys.: Condens. Matter, 2003, vol. 15, no. 21, pp. 3567–3581.

    Article  CAS  Google Scholar 

  31. Robertson, J., Xiong, K., and Clark, S., Band Gaps and Defect Levels in Functional Oxides, Thin Solid Films, 2006, vol. 496, no. 1, pp. 1–7.

    Article  CAS  Google Scholar 

  32. Peacock, P.W. and Robertson, J., Band Offsets and Schottky Barrier Heights of High Dielectric Constant Oxides, J. Appl. Phys., 2002, vol. 92, no. 8, pp. 4712–4721.

    Article  CAS  Google Scholar 

  33. Makurin, Yu.N., Sofronov, A.A., Kiiko, V.S., et al., Electronic Structure and Chemical Bonding in Wurtzite BeO, Zh. Strukt. Khim., 2002, vol. 43, no. 3, pp. 557–560.

    Google Scholar 

  34. Shein, I.R., Kiiko, V.S., Makurin, Yu.N., et al., Elastic Constants of Single-Crystal and Polycrystalline Wurtzite BeO and MnO: First Principles Calculations, Fiz. Tverd. Tela (S.-Peterburg), 2007, vol. 49, no. 6, pp. 1015–1020.

    Google Scholar 

  35. Martin, L.P., Dadon, D., and Rosen, M., Evaluation of Ultrasonically Determined Elasticity-Porosity Relations in Zinc Oxide, J. Am. Ceram. Soc., 1996, vol. 79, no. 5, pp. 1281–1289.

    Article  CAS  Google Scholar 

  36. Cline, C.F., Dunegan, H.L., and Henderson, G., Elastic Constants of Hexagonal BeO, ZnS, and CdSe, J. Appl. Phys., 1967, vol. 38, no. 4, pp. 1944–1948.

    Article  CAS  Google Scholar 

  37. Bentle, G.G., Elastic Constants of Single-Crystal BeO at Room Temperature, J. Am. Ceram. Soc., 1966, vol. 49, no. 3, pp. 125–128.

    Article  CAS  Google Scholar 

  38. Voigt, W., Lehrbuch der Kristallphysik, Leipzig: Teubner, 1928, p. 962.

    Google Scholar 

  39. Reuss, A., Berechnung der Fliebgrense von Mischkristallen auf Grund der Plastizittsbedingung für Einkristalle, Z. Angew. Math. Mech., 1929, vol. 9, pp. 49–64.

    Article  CAS  Google Scholar 

  40. Haines, J., Leger, J.M., and Bocquillon, G., Synthesis and Design of Superhard Materials, Annu. Rev. Mater. Res., 2001, vol. 31, pp. 1–23.

    Article  CAS  Google Scholar 

  41. Fryxell, R.E. and Chandler, B.A., Creep, Strength, Expansion, and Elastic Moduli of Sintered BeO As a Function of Grain Size, Porosity, and Grain Orientation, J. Am. Ceram. Soc., 1964, vol. 47, no. 6, pp. 283–291.

    Article  CAS  Google Scholar 

  42. Ryshkewitch, E., Rigidity Modulus of Some Pure Oxide Bodies, J. Am. Ceram. Soc., 1951, vol. 34, no. 10, pp. 322–326.

    Article  CAS  Google Scholar 

  43. Fast, L., Wills, J.M., Johansson, B., and Eriksson, O., Elastic Constants of Hexagonal Transition Metals: Theory, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 51, pp. 17 431–17 438.

    CAS  Google Scholar 

  44. Anderson, O.L., A Simplified Method for Calculating the Debye Temperature from Elastic Constants, J. Phys. Chem. Solids, 1963, vol. 24, pp. 909–917.

    Article  CAS  Google Scholar 

  45. Singh, D. and Varshni, Y.P., Debye Temperatures for Hexagonal Crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 1981, vol. 24, pp. 4340–4347.

    CAS  Google Scholar 

  46. Gorbunova, M.A., Kiiko, V.S., Sofronov, A.A., et al., Effect of Heat Treatment on the Electronic Spectrum and Mechanical Properties of BeO Ceramics, Neorg. Mater., 2006, vol. 42, no. 10, pp. 1278–1280 [Inorg. Mater. (Engl. Transl.), vol. 42, no. 10, pp. 1168–1170].

    Article  CAS  Google Scholar 

  47. Makurin, Yu.N., Shein, I.R., Gorbunova, M.A., et al., First-Principles Evaluation of Thermomechanical Parameters of Beryllium Oxide Ceramics, Nov. Ogneupory, 2007 (in press).

  48. Phillips, J.C., Ionicity of the Chemical Bond in Crystals, Rev. Mod. Phys., 1970, vol. 42, pp. 317–356.

    Article  CAS  Google Scholar 

  49. Cohen, M., Prediction of New Materials and Properties of Solids, Int. J. Quantum Chem., 1986, vol. 29, pp. 843–854.

    Article  CAS  Google Scholar 

  50. Jephcoat, A.P., Hemley, R.J., Mao, H.K., et al., Raman Spectroscopy and Theoretical Modeling of BeO at High Pressure, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, vol. 37, pp. 4727–4734.

    CAS  Google Scholar 

  51. Boettger, J.C. and Wills, J.M., Theoretical Structural Phase Stability of BeO to 1 TPa, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, no. 13, pp. 8965–8968.

    CAS  Google Scholar 

  52. Park, C.J., Lee, S.G., Ko, Y., and Chang, K.K., Theoretical Study of the Structural Phase Transformation of BeO under Pressure, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, no. 21, pp. 13 501–13 504.

    CAS  Google Scholar 

  53. Cai, Y., Wu, S., Xu, R., and Yu, J., Pressure-Induced Phase Transition and Its Atomistic Mechanism in BeO: A Theoretical Calculation, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, no. 18, art. 184 104.

  54. Continenza, A., Wentzcovitch, R.W., and Freeman, A.J., Theoretical Investigation of Graphitic BeO, Phys. Rev. B: Condens. Matter Mater. Phys., 1990, vol. 41, no. 6, pp. 3540–3544.

    CAS  Google Scholar 

  55. Kruzhalov, A.V., Ivanov, V.Yu., Bautin, K.V., et al., Metastable Defects in Beryllium Oxide Crystals, Nucl. Instrum. Methods. Phys. Res., Sect. A, 2002, vol. 486, nos. 1–2, pp. 325–329.

    Article  CAS  Google Scholar 

  56. Gorbunov, S.V. and Yakovlev, I.Yu., Self-Trapped Exciton Luminescence Excitation via Recombination of Frenkel Defects in BeO, Fiz. Tverd. Tela (S.-Peterburg), 2005, vol. 47, no. 4, pp. 603–607.

    Google Scholar 

  57. Kiiko, V.S., Makurin, Yu.N., Dmitriev, I.A., et al., Relationship between the Thermoluminescence and Ceramics Properties of Beryllium Oxide, Steklo Keram., 2001, vol. 58, no. 10, pp. 19–24.

    Google Scholar 

  58. Kiiko, V.S., Dmitriev, I.A., Makurin, Yu.N., et al., Fabrication and Application of Transparent Beryllium Oxide Ceramics, Fiz. Khim. Stekla, 2004, vol. 30, pp. 149–152.

    Google Scholar 

  59. Sofronov, A.A., Gorbunova, M.A., Makurin, Yu.N., et al., Intrinsic Point Defects and Electronic Structure of Hexagonal BeO, Zh. Strukt. Khim., 2006, vol. 47, no. 4, pp. 773–775.

    Google Scholar 

  60. Ivanovskii, A.L. and Shveikin, G.P., Kvantovaya khimiya v materialovedenii. Nemetallicheskie tugoplavkie soedineniya i nemetallicheskaya keramika (Quantum Chemistry in Materials Research: Nonmetallic Refractory Compounds and Ceramics), Yekaterinburg: Ural. Otd. Ross. Akad. Nauk, 2000.

    Google Scholar 

  61. Suzuki, K., Ichihara, M., and Takeuchi, S., High-Resolution Electron Microscopy of Extended Defects in Wurtzite Crystals, Jpn. J. Appl. Phys., 1994, vol. 33, no. 2, pp. 1114–1119.

    Article  CAS  Google Scholar 

  62. Chisholm, J.A. and Bristowe, P.D., A First Principles Investigation of Stacking Faults in Wurtzite Materials, J. Phys.: Condens. Matter, 1999, vol. 11, no. 26, pp. 5057–5063.

    Article  CAS  Google Scholar 

  63. Sofronov, A.A., Enyashin, A.N., Kiiko, V.S., et al., Effect of Li and B Substitutions on the Electronic Structure of Beryllium Oxide, Issled. Ross., 2003, pp. 1693–1700, http://zhurnal.ape.relarn.ru/artisles/2003/142.pdf.

  64. Kiiko, V.S., Dmitriev, I.A., and Makurin, Yu.N., Luminescence from Transparent BeO Ceramics Doped with Boron Oxide, Neorg. Mater., 1999, vol. 35, no. 4, pp. 508–512 [Inorg. Mater. (Engl. Transl.), vol. 35, no. 4, pp. 417–420].

    Google Scholar 

  65. Shein, I.R., Ryzhkov, M.V., Gorbunova, M.A., et al., Magnetization of Beryllium Oxide Containing Nonmagnetic Impurities: Boron, Carbon, and Nitrogen, Pis’ma Zh. Eksp. Teor. Fiz., 2007, vol. 85, no. 5, pp. 298–303.

    Google Scholar 

  66. Kenmochi, K., Seike, M., Sato, K., et al., A New Class of Diluted Ferromagnetic Semiconductors Based on CaO without Transition Metal Elements, Jpn. J. Appl. Phys., 2004, vol. 43, no. 7A, pp. L934–L936.

    Article  CAS  Google Scholar 

  67. Dinh, V.D., Sato, K., and Katayama-Yoshida, H., Dilute Magnetic Semiconductors Based on Wide Bandgap SiO2 with and without Transition Metal Elements, Solid State Commun., 2005, vol. 136, no. 1, pp. 1–5.

    Article  CAS  Google Scholar 

  68. Osorio-Guillen, J., Lany, S., Barabash, S.V., and Zunger, A., Magnetism without Magnetic Ions: Percolation, Exchange, and Formation Energies of Magnetism-Promoting Intrinsic Defects in CaO, Phys. Rev. Lett., 2006, vol. 96, no. 17, art. 107 203.

  69. Ryu, Y.R., Lee, T.S., Lubguban, J.A., et al., Wide-Band Gap Oxide Alloy: BeZnO, Appl. Phys. Lett., 2006, vol. 88, no. 5, pp. 052 103–052 105.

    Article  CAS  Google Scholar 

  70. Ryu, Y.R., Lee, T.S., Lubguban, J.A., et al., Next Generation of Oxide Photonic Devices: ZnO-Based Ultraviolet Light Emitting Diodes, Appl. Phys. Lett., 2006, vol. 88, no. 24, pp. 241 108–241 111.

    Article  CAS  Google Scholar 

  71. Moiseev, G.K. and Ivanovskii, A.L., Composition of the Condensed Phase during Heating of a TiO2 + BeO Mixture in Argon, Izv. Chelyabinsk. NTs, 2006, no. 2 (32), pp. 33–36.

  72. Gorbunova, M.A., Shein, I.R., Makurin, Yu.N., et al., Electronic and Magnetic Properties of Beryllium Oxide With 3d Impurities from the First-Principles Calculations, Phys. B (Amsterdam, Neth.), 2007, vol. 400, no. 1, pp. 47–52.

    CAS  Google Scholar 

  73. Ivanovskii, A.L., Magnetization of Nonmagnetic sp-Materials Containing sp-Impurities and Defects, Usp. Fiz. Nauk, 2007, vol. 177, no. 10, pp. 1083–1105.

    Article  Google Scholar 

  74. Shein, I.R. and Ivanovskii, A.L., Vacancy-Induced Magnetism of Beryllium Oxide, Zh. Strukt. Khim., 2007, vol. 48, no. 6, pp. 1210–1213.

    Google Scholar 

  75. Shein, I.R., Gorbunova, M.A., Makurin, Yu.N., et al., Magnetism without Magnetic Impurities in Beryllium Monoxide BeO: First Principles Calculation, Int. J. Mod. Phys., 2008, (in press).

  76. Jaffe, J.E. and Zapol, P., Atomic Relaxation of the BeO (1010) Surface, Surf. Sci. Lett., 1997, vol. 381, pp. 563–567.

    Article  Google Scholar 

  77. Lichanot, A., Baraille, I., Larrieu, C., and Chaillet, M., Theoretical Study of the Stability of Beryllium Oxide (110) and (001) Surfaces in Dense Wurtzite and Layered Graphitic Phases, Phys. Rev. B: Condens. Matter Mater. Phys., 1995, vol. 52, pp. 17 480–17 490.

    CAS  Google Scholar 

  78. Lambrecht, W. and Segall, B., Electronic Structure and Total Energy of Diamond/BeO Interfaces, J. Mater. Res., 1992, vol. 7, pp. 696–705.

    Article  CAS  Google Scholar 

  79. Worner, B., Kriegseis, W., and Scharmann, A., The Influence of H2O Adsorption on the Thermally Stimulated Exoelectron Emission (TSEE) of BeO Thin Films, Phys. Status Solidi, 1991, vol. 128, no. 2, pp. 419–426.

    Article  Google Scholar 

  80. Kriegseis, W., Kessler, H., Rauber, K., et al., Response of TSEE Dosemeters of Foil-Covered BeO Thin Films to Beta Radiation, Radiat. Prot. Dosim., 1991, vol. 39, pp. 127–130.

    CAS  Google Scholar 

  81. Lemmer, N., Kriegseis, W., and Scharmann, A., Effects of High Temperature Oxidation on the TSEE of BeO Thin Films, Phys. Status Solidi, 1994, vol. 144, no. 2, pp. K77–K82.

    Article  CAS  Google Scholar 

  82. Markin, A., Gorodetsky, A., Scaffidi-Argentina, F., et al., Deuterium Trapping in Ion Implanted, Thermally-Grown Oxide Layers and Codeposited Beryllium Oxide, Fusion Technol., 2000, vol. 38, no. 3, pp. 363–368.

    CAS  Google Scholar 

  83. Markin, A.V., Dubkov, V.P., Gorodetsky, A.E., et al., Codeposition of Deuterium Ions with Beryllium Oxide at Elevated Temperatures, J. Nucl. Mater., 2000, vol. 283, pp. 1094–1099.

    Article  Google Scholar 

  84. Czerski, K., Schiwietz, G., and Roth, M., Non-Equilibrium Emission of Secondary Ions from BeO Films Sputtered by Swift Gold Ions, Nucl. Instrum. Methods Phys. Res., Sect. B, 2004, vol. 225, nos. 1–2, pp. 72–77.

    Article  CAS  Google Scholar 

  85. Freeman, C.L., Claeyssens, F., Allan, N.L., and Harding, J.H., Graphitic Nanofilms As Precursors to Wurtzite Films: Theory, Phys. Rev. Lett., 2006, vol. 96, p. 066102.

    Article  CAS  Google Scholar 

  86. Wander, A., Schedin, F., Steadman, P., et al., Stability of Polar Oxide Surfaces, Phys. Rev. Lett., 2001, vol. 86, pp. 3811–3814.

    Article  CAS  Google Scholar 

  87. Ivanovskii, A.L., Titanium Nanocarbides: Synthesis and Modeling, Teor. Eksp. Khim., 2007, vol. 43, no. 1, pp. 1–23.

    CAS  Google Scholar 

  88. Ivanovskaya, V.V., Enyashin, A.N., Makurin, Yu.N., and Ivanovskii, A.L., Computer Simulation of Novel Nanotubes and Prediction of Their Functional Properties, Nanotekhnika, 2006, no. 1 (5), pp. 126–141.

  89. Harris, P.J.F., Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century, Cambridge: Cambridge Univ. Press, 1999.

    Google Scholar 

  90. Ivanovskii, A.L., Modeling of Nanotubular Materials, Usp. Khim., 1999, vol. 68, no. 2, pp. 119–135.

    Google Scholar 

  91. Zandler, M.E., Behrman, E.C., Arrasmith, M.B., and Myers, J.R., Semiempirical Molecular Orbital Calculation of Geometric, Electronic, and Vibrational Structures of Metal Oxide, Metal Sulfide, and Other Inorganic Fullerene Spheroids, THEOCHEM, 1996, vol. 362, no. 2, pp. 215–224.

    Article  CAS  Google Scholar 

  92. Enyashin, A.N., Makurin, Yu.N., Sofronov, A.A., et al., Beryllium Oxide Nanoclusters: Quantum-Chemical Modeling of the Electronic Structure and Chemical Bonding, Zh. Neorg. Khim., 2004, vol. 49, no. 6, pp. 979–985.

    CAS  Google Scholar 

  93. Sorokin, P.B., Fedorov, A.S., and Chernozatonskii, L.A., Structure and Properties of BeO Nanotubes, Fiz. Tverd. Tela (S.-Peterburg), 2006, vol. 48, no. 2, pp. 373–376.

    Google Scholar 

  94. Gorbunova, M.A., Shein, I.R., Makurin, Yu.N., et al., Electronic Structure and Magnetism in BeO Nanotubes Induced by Boron, Carbon, and Nitrogen Impurities, and Beryllium and Oxygen Vacancies inside Tube Walls, Phys. E (Amsterdam, Neth.), 2008 (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Ivanovskii.

Additional information

Original Russian Text © A.L. Ivanovskii, I.R. Shein, Yu.N. Makurin, V.S. Kiiko, M.A. Gorbunova, 2009, published in Neorganicheskie Materialy, 2009, Vol. 45, No. 3, pp. 263–275.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanovskii, A.L., Shein, I.R., Makurin, Y.N. et al. Electronic structure and properties of beryllium oxide. Inorg Mater 45, 223–234 (2009). https://doi.org/10.1134/S0020168509030017

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168509030017

Keywords

Navigation