Skip to main content
Log in

Conductivity of the nanostructured ceramic material Zr0.88Sc0.1Ce0.01Y0.01O1.955 prepared from mechanically activated powders

  • Published:
Inorganic Materials Aims and scope

Abstract

The structure of the Zr0.88 Sc0.1Ce0.01Y0.01O1.955 solid solution, a candidate for the use as a solid electrolyte in fuel cells with a low temperature, has been investigated using x-ray powder diffraction and Raman spectroscopy. Single-phase ceramic materials have been produced from powders prepared by the mechanochemical synthesis from ZrO2 nanoprecursors purified of the impurities introduced during grinding of commercial zirconia. The solid solution has a rhombohedral structure at room temperature owing to the partial ordering of oxygen vacancies. The electrical conductivity of the ceramic materials sintered at temperatures below 1570 K exhibits a hysteresis due to the delay of the martensitic transition from the cubic phase to the rhombohedral phase upon cooling of the sample. The nanostructured ceramic materials are characterized by a high mechanical strength and unusually close values of the activation energies for bulk and grain-boundary electrical conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strickler, D.W. and Karlson, W.G., Electrical Conductivity in the ZrO2-Rich Region of Several M2O3-ZrO2 Systems, J. Am. Ceram. Soc., 1965, vol. 48, no. 6, pp. 286–289.

    Article  CAS  Google Scholar 

  2. Spiridonov, F.M., Popova, L.N., and Popil’skii, R.Ya., On the Phase Relations and the Electrical Conductivity in the System ZrO2-Sc2O3, J. Solid State Chem., 1970, vol. 2, no. 3, pp. 430–438.

    Article  CAS  Google Scholar 

  3. Kosacki, I., Anderson, H.U., Mizutani, Y., and Ukai, K., Nonstoichiometry and Electrical Transport in Sc-Doped Zirconia, Solid State Ionics, 2002, vols. 152–153, pp. 431–438.

    Article  Google Scholar 

  4. Haering, C., Roosen, A., Schichle, H., and Schnüller, M., Degradation of the Electrical Conductivity in [!]Stabilized Zirconia System[!]: Part II[!]. [!]Scandia-Stabilized Zirconia, Solid State Ionics, 2005, vol. 176, pp. 261–268.

    Article  CAS  Google Scholar 

  5. Lei, Z. and Zhu, Q., [!]Low-Temperature Processing of Dense Nanocrystalline Scandia-Doped Zirconia (ScSZ) Ceramics, Solid State Ionics, 2005, vol. 176, nos. 37–38, pp. 2791–2797.

    Article  CAS  Google Scholar 

  6. Sakuma, T. and Suto, H., The Cubic-to-β Martensitic Transformation in ZrO2-Sc2O3, J. Mater. Sci., 1986, vol. 21, no. 12, pp. 4359–4365.

    Article  CAS  Google Scholar 

  7. Wang, Z., Cheng, M., Bi, Z., et al., Structure and Impedance of ZrO2 Doped with Sc2O3 and CeO2, Mater. Lett., 2005, vol. 59, nos. 19–20, pp. 2579–2582.

    Article  CAS  Google Scholar 

  8. Fujimori, H., Yashima, M., Kakihana, M., and Yoshimura, M., [!]Structural Changes of Scandia-Doped Zirconia Solid Solutions: Rietveld Analysis and Raman Scattering, J. Am. Ceram. Soc., 1998, vol. 81, no. 11, pp. 2885–2893.

    Article  CAS  Google Scholar 

  9. Badwal, S.P.S. and Drennan, J., Microstructure/Conductivity Relationship in the Scandia-Zirconia System, Solid State Ionics, 1992, vols. 53–56, no. 2, pp. 769–776.

    Article  Google Scholar 

  10. Lee, D.S., Kim, W.S., Choi, S.H., et al., Characterization of ZrO2 Co-Doped with Sc2O3 and CeO2 Electrolyte for the Application of Intermediate Temperature SOFCs, Solid State Ionics, 2005, vol. 176, pp. 33–39.

    Article  CAS  Google Scholar 

  11. Sarat, S., Sammes, N., and Smirnova, A., Bismuth Oxide Doped Scandia-Stabilized Zirconia Electrolyte for the Intermediate Temperature Solid Oxide Fuel Cells, J. Power Sources, 2006, vol. 160, pp. 892–896.

    Article  CAS  Google Scholar 

  12. Politova, T.I. and Irvine, J.T.S., Investigation of Scandia-Yttria-Zirconia System as An Electrolyte Material for Intermediate Temperature Fuel Cells-Influence of Yttria Content in System (Y2O3)x(Sc2O3)(11−x)(ZrO2)89, Solid State Ionics, 2006, vol. 168, pp. 153–165.

    Article  CAS  Google Scholar 

  13. Smirnova, A., Sadykov, V., [!] Muzykantov, V., et al., Scandia-Stabilized Zirconia: Effect of Dopants on Surface/Grain Boundary Segregation and Transport Properties, Mater. Res. Soc. Symp. Proc., 2007, vol. 972, p. 0972-AA10–05.

    Google Scholar 

  14. Zevalkink, A., Hunter, A., Swanson, M., et al., Processing and Characterization of Sc2O3-CeO2-ZrO2 Electrolyte Based Intermediate Temperature Solid Oxide Fuel Cells, Mater. Res. Soc. Symp. Proc., 2007, vol. 972, p. 0972-AA03–04.

    Google Scholar 

  15. Zyryanov, V.V., Uvarov, N.F., and Sadykov, V.A., Mechanochemical Synthesis of Solid Solutions Based on ZrO2 and Their Electrical Conductivity, Fiz. Khim. Stekla, 2007, vol. 33, no. 4, pp. [!]546–555 [Glass Phys. Chem. (Engl. transl.), 2007, vol. 33, no. 4, pp. [394–401].

    Google Scholar 

  16. Kosacki, I., Rouleau, C.M., Becher, P.F., et al., Nanoscale Effects on the Ionic Conductivity in Highly Textured YSZ Thin Films, Solid State Ionics, 2005, vol. 176, pp. 1319–1326.

    Article  CAS  Google Scholar 

  17. Appel, C.C. and Bonanos, N., Structural and Electrical Characterization of Silica-Containing Yttria-Stabilized Zirconia, J. Eur. Ceram. Soc., 1999, vol. 19, p. 847.

    Article  CAS  Google Scholar 

  18. Mondal, P., Klein, A., Jaegermann, W., and Hahn, H., Enhanced Specific Grain Boundary Conductivity in Nanocrystalline Y2O3-Stabilized Zirconia, Solid State Ionics, 1999, vol. 118, nos. 3–4, pp. 331–339.

    Article  CAS  Google Scholar 

  19. Zyryanov, V.V. and Kostrovskii, V.G., Polymorphism of ZrO2 Nanopowders and Mechanochemical Synthesis of Zr0.88Sc0.1Ce0.01Y0.01O1.955, Neorg. Mater., 2008, vol. 44, no. 11 (in press) [Inorg. Mater. (Engl. transl.), 2008, vol. 44, no. 11 (in press)].

  20. Zyryanov, V.V., A Method for the Preparation of Grinding Bodies Prior to Milling of a Dielectric Material in a Tumbling Mill, USSR Inventor’s Certificate no. 1536 573, 1989.

  21. Zyryanov, V.V., Ultrafast Mechanochemical Synthesis of Mixed Oxides, Neorg. Mater., 2005, vol. 41, no. 4, pp. 450–464 [Inorg. Mater. (Engl. transl.), 2005, vol. 41, no. 4, pp. 378–392].

    Article  CAS  Google Scholar 

  22. Zyryanov, V.V. and Paichadze, K.S., Mechanochemical Synthesis and Sintering of Complex Perovskites and Layer Perovskites for Membrane Applications, in Abstracts of the Asian Symposium Advanced Materials (ASAM), Vladivostok, Russia, 2007, Vladivostok, 2007, p. 114.

  23. Nemudry, A. and Uvarov, N., Nanostructuring in Composites and Grossly Nonstoichiometric or Heavily Doped Oxides, Solid State Ionics, 2006, vol. 177, pp. 2491–2494.

    Article  CAS  Google Scholar 

  24. Zhogin, I.L., Nemudry, A.P., Glyanenko, P.V., et al., Oxygen Diffusion in Nanostructured Perovskites, Catal. Today, 2006, vol. 118, pp. 151–157.

    Article  CAS  Google Scholar 

  25. Isupova, L.A., Tsybulya, S.V., Kryukova, G.N., et al., Real Structure and Catalytic Activity of La1−x CaxMnO3+δ Perovskites, Solid State Ionics, 2001, vols. 141–142, pp. 417–425.

    Article  Google Scholar 

  26. Zyryanov, V.V., Uvarov, N.F., Kostrovskii, V.G., et al., Design of New Oxide Ceramic Materials and Nanocomposites with Mixed Conductivity by Using Mechanical Activation Route, Mater. Res. Soc. Symp. Proc., 2003, vol. 755, p. DD.6.27.1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Zyryanov, N.F. Uvarov, A.S. Ulikhin, V.G. Kostrovskii, B.B. Bokhonov, V.P. Ivanov, V.A. Sadykov, A.T. Titov, K.S. Paichadze, 2009, published in Neorganicheskie Materialy, 2008, Vol. 45, No. 1, pp. 94–101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zyryanov, V.V., Uvarov, N.F., Ulikhin, A.S. et al. Conductivity of the nanostructured ceramic material Zr0.88Sc0.1Ce0.01Y0.01O1.955 prepared from mechanically activated powders. Inorg Mater 45, 90–98 (2009). https://doi.org/10.1134/S0020168509010142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168509010142

Keywords

Navigation