Skip to main content
Log in

Microwave heating for enhancing efficiency of analytical operations (Review)

  • Published:
Inorganic Materials Aims and scope

Abstract

The current state and specific features of analytical methods using microwave heating are analyzed. Output laboratory microwave systems are described, such as dryers; muffle furnaces for ashing, burning, and alloying at atmospheric and increased pressure; and systems for decomposition and extraction. The possibilities and trends of the application of microwave radiation for intensification of the analytical operations of sample preparation, in particular, sorption and extraction concentration, are considered. Examples of using microwave radiation for obtaining substances and materials with analytical and technological purposes are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Microwave-Enhanced Chemistry. Fundamentals, Sample Preparation and Application, Kingston, H.M. and Haswell, S.J., Eds., Washington, DC: American Chemical Society, 1997.

    Google Scholar 

  2. Nüchter, M., Ondruschka, B., Bonrath, W., and Gum, A., Green Chem., 2004, vol. 6, no. 3, pp. 128–141.

    Article  Google Scholar 

  3. Lew, A., Krutzik, P.O., Hart, M.E., and Chamberlin, A.R., J. of Combinational Chem., 2002, vol. 4, no. 2, pp. 95–105.

    Article  CAS  Google Scholar 

  4. Kubrakova, I.V., Uspekhi khimii, 2002, vol. 71, no. 4, pp. 327–340.

    Google Scholar 

  5. Perreux, L. and Loupy, A., Tetrahedron, 2001, vol. 57, no. 45, pp. 9199–9233.

    Article  CAS  Google Scholar 

  6. Romanova, N.N., Gravis, A.G., and Zyk, N.V., Uspekhi khimii, 2005, vol. 74, no. 11, pp. 1059–1105.

    Google Scholar 

  7. Elander, N., Jones, J.R., Lu, S.Y., and Stone-Elander, S., Chem. Soc. Rev, 2000, vol. 29, no. 4, pp. 239–249.

    Article  CAS  Google Scholar 

  8. Mingos, D.M.P. and Baghurst, D.R., Chem. Soc. Rev., 1991, vol. 20, no. 1, pp. 1–47.

    Article  CAS  Google Scholar 

  9. Introduction to Microwave Sample Preparation, Theory and Practice, Kingston, H.M. and Jassie, L.V., Eds., Washington, DC: American Chemical Society, 1988 (Probopodgotovka v mikrovolnovykh pechakh. Teoria I praktika, Kingston, H.M. and Jassie, L.V., Eds., Moscow: Mir, 1991.

    Google Scholar 

  10. Karre, S.O., Angew. Chem. Int., 2004, vol. 43, no. 46, pp. 6250–6284.

    Article  Google Scholar 

  11. De la Hoz, A., Diaz-Ortiz, Á., and Moreno, A., Chem. Soc. Rev., 2005, vol. 34, no. 2, pp. 164–178.

    Article  Google Scholar 

  12. Thiebaut, J.M., Roussy, G., Medjram, M., Seyfield, L., Garin, F., and Maire, J., Catal. Lett, 1993, vol. 21, nos. 1–2, p. 133.

    Article  CAS  Google Scholar 

  13. Chatakondu, K., Green, M.L.H., Mingos, D.M.P., and Reynolds, S.M., J. Chem. Soc. Commun., 1989, no. 20, pp. 1515–1517.

  14. Hayes, B.L., Microwave Synthesis. Chemistry at the Speed of Light, Matthew, NC: CEM Publishing, 2002.

    Google Scholar 

  15. Kubrakova, I.V., Zhurnal analiticheskoi khimii, 2000, vol. 55, no. 12, pp. 1239–1249.

    Google Scholar 

  16. Abu-Samra, A., Morris, J.S., and Koirtyohann, S.R., Analytical Chem., 1975, vol. 47, no. 8, pp. 1475–1477.

    Article  CAS  Google Scholar 

  17. Xu, Y., Chen, X., and Hu, Z., Analyt. Chem. Acta, 1994, vol. 292, no. 1–2, pp 191–199.

    Article  CAS  Google Scholar 

  18. Li, G., Xu, Y., Chen, X., and Hu, Z., Analyt. Lett., 1995, vol. 28, no. 12, pp. 2227–2238.

    CAS  Google Scholar 

  19. Xu, Y.J. and Hu, Z.D., Analyt. Lett., 1994, vol. 27, no. 4, pp. 793–805.

    CAS  Google Scholar 

  20. Chen, X.G., Xu, H.P., Dong, L.J., Liu, H.T., Zeng, Y.B., and Hu, Z.D., Analyt. and Bioanalyt. Chem., 2002, vol. 373, no. 8, pp. 883–888.

    Article  CAS  Google Scholar 

  21. Zeng, Y.B., Xu, H.P., Liu, H.T., Wang, K.T., Chen, X.G., Hu, Z.D., and Fan, B.T., Talanta, 2001, vol. 54, no. 4, pp. 603–609.

    Article  CAS  Google Scholar 

  22. Wang, H., Zhou, Y., Li, Q., Chen, X., and Hu, Z., Analyt. Chim. Acta, 2001, vol. 429, no. 2, pp. 207–213.

    Article  CAS  Google Scholar 

  23. Paré, J., Bélanger, and Stafford, S, Trends Analyt. Chem., 1994, vol. 13, no. 4, pp. 176–184.

    Article  Google Scholar 

  24. Camel, V, Trends Analyt. Chem., 2000, vol. 19, no. 4, pp. 229–248.

    Article  CAS  Google Scholar 

  25. Smith, F.E. and Arsenault, E.A., Talanta, 1996, vol. 43, no. 8, pp. 1207–1268.

    Article  CAS  Google Scholar 

  26. Chakraborty, R., Das, A.K., Cerrera, M.L., and de la Guardia, M., Fresenius J. Analyt. Chem., 1996, vol. 355, no. 1, pp. 99–111.

    CAS  Google Scholar 

  27. Kingston, H.M., Inductively Coupled Plasma Mass Spectrometry, Montaser, A., Ed., New York, Chichester, Weinheim, Brisbane, Singapore, and Toronto: Wiley-VCH, 1998, p. 33.

    Google Scholar 

  28. Jin, Q., Liang, F., Zhang, H., Zhao, L., Huan, Y., and Song, D., Trends Analyt. Chem., 1999, vol. 18, no. 7, pp. 479–484.

    Article  CAS  Google Scholar 

  29. Kubrakova, I.V., Kudinova, T.F., and Kuz’min, N.M., Koordinatsionnaya khimiya, 1998, vol. 24, no. 2, pp. 131–135.

    Google Scholar 

  30. Bashilov, A.V., Fedorova, A.A., and Runov, V.K., Zhurnal organicheskoi khimii, 2000, vol. 55, no. 12, pp. 1250–1255.

    Google Scholar 

  31. Bashilov, A.V., Kuz’min, N.M., Nesterov, A.A., and Runov, V.K., Zhurnal neorganicheskoi khimii, 2000, vol. 45, no. 4, pp. 743–751.

    CAS  Google Scholar 

  32. Bashilov, A.V., Lanskaya, S.Yu., and Zolotov, Yu.A., Zhurnal organicheskoi khimii, vol. 58, no. 9, pp. 948–954.

  33. Dedkov, Yu.M., Korsakova, N.V., and Radugina, O.G., Zhurnal analiticheskoi khimii, vol. 55, no. 12, pp. 1256–1259.

  34. Morosanova, E.I., Velikorodnyi, A.A., Zolotov, Yu.A., and Skornyakov, V.I., Zhurnal analiticheskoi khimii, 2000, vol. 55, no. 12, pp. 1265–1269.

    Google Scholar 

  35. Toropchenova, E.S., Ezerskaya, N.A., Kubrakova, I.V., Kudinova, T.F., and Kiseleva, I.N., Koordinatsionnaya khimiya, 1999, vol. 25, no. 5, pp. 352–355.

    Google Scholar 

  36. Ezerskaya, N.A., Toropchenova, E.S., Kaprielov, V.B., Kiseleva, I.N., and Belov, S.F., Zhurnal analiticheskoi khimii, 2004, vol. 59, no. 11, pp. 1213–1217.

    Google Scholar 

  37. Ezerskaya, N.A., Toropchenova, E.S., Pachgin, D.B., and Kiseleva, I.N., Zhurnal analiticheskoi khimii, 2004, vol. 59, no.3, pp. 332–335.

    Google Scholar 

  38. Toropchenova, E.S., Ezerskaya, N.A., and Kiseleva, I.N., Zavodskaya laboratoriya. Diagnostika materialov, 2004, vol. 70, no. 9, pp. 25–28.

    CAS  Google Scholar 

  39. Ezerskaya, N.A., Toropchenova, E.S., Kubrakova, I.V., Krasheninnikova, S.V., Kudinova, T.F., Fomina, T.A., and Kiseleva, I.N., Zhurnal analiticheskoi khimii, 2000, vol. 55, no. 12, pp. 1260–1264.

    Google Scholar 

  40. Makarov, D.F., Kovaleva, O.V., and Gordienko, V.A., Zavodskaya laboratoriya. Diagnostika materialov, 2003, vol. 69, no. 12, pp. 21–23.

    Google Scholar 

  41. Sur, U.K., Marken, F., Rees, N., Compton, R.G., and Seager, R., J. of Electroanalyt. Chem., 2004, vol. 573, no. 1, pp. 175–182.

    Article  CAS  Google Scholar 

  42. Sur, U.K., Marken, F., Coles, B.A., Compton, R.G., and Dupont, J., Chem. Comm., 2004, vol. 24, no. 24, pp. 2816–2817.

    Google Scholar 

  43. Ghanem, M.A., Compton, R.G., Coles, B.A., Canals, A., and Marken, F., The analyst, 2005, vol. 130, no. 10, pp. 1425–1431.

    Article  CAS  Google Scholar 

  44. Konno, H. and Sasaki, Y., Chem. Lett., 2003, vol. 32, no. 3, pp. 252–253.

    Article  CAS  Google Scholar 

  45. Jasimuddin, S., Byabartta, P., Mostafa, G., Lu, T.-H., and Sinha, C., Polyhedron, 2004, vol. 23, no. 5, pp. 727–733.

    Article  CAS  Google Scholar 

  46. Wu, F. and Thummel, R.P., Inorg. Chim. Acta, 2002, vol. 327, no. 1, pp. 26–30.

    Article  CAS  Google Scholar 

  47. Mainchin, B., Kettish, P., and Knapp, G., Fresenius J. Analyt. Chem., 2000, vol. 366, no. 1, pp. 26–29.

    Article  Google Scholar 

  48. Koshcheeva, I.Ya., Belen’kaya, S.N., and Kurbakova, I.V., Abstracts of Papers, Int. Congress on Analytical Sciences, 2006, p. 860.

  49. Nóbrega, J.A., Trevizan, L.C., Araújo, G.C.L, and Nogueira, A.R.A., Spectrochimia Acta. Part B: Atomie Spectroscopy, 2002, vol. 57, no. 12, pp. 1855–1876.

    Article  Google Scholar 

  50. Link, D.D. and Kingston, H.M., Analyt. Chem., 2000, vol. 72, no. 13, pp. 2908–2913.

    Article  CAS  Google Scholar 

  51. Kubrakova, I.V., Myasoedova, G.B., Eremin, S.A., Pletnev, I.V., Mokhodoeva, O.B., Morozova, V.A., and Khachatryan, K.S., Metody I ob’ekty khimicheskogo analiza, 2006, vol. 1, no. 1, pp. 27–34.

    Google Scholar 

  52. Kubrakova, I.V., Myasoedova, G.V., Shumskaya, T.V., Kudinova, T.F., Zakharchenko, E.A., and Mokhodoeva, O.B., Zhurnal analiticheskoi khimii, 2005, vol. 60, no. 5, pp. 536–542.

    Google Scholar 

  53. Kubrakova, I.V., Kudinova, T.F., Formanovskii, A.A., Kuz’min, N.M., Tsysin, G.I., and Zolotov, Yu.A., Analyst, 1994, vol. 11, pp. 2477–2480.

    Article  Google Scholar 

  54. Analiticheskaya khimiya metallov platinovoi gruppy: Sbornik obzornykh statei, Zolotov, Yu. A., Varshal, G.M., and Ivanov, V.M., Eds., Moscow: Editorial URSS, 2003.

    Google Scholar 

  55. Kuz’min, N.M., Dementiev, A.V., Kubrakova, I.V., and Myasoedova, G.V., Zhurnal analiticheskoi khimii, 1990, vol. 45, no. 1, pp. 46–50.

    CAS  Google Scholar 

  56. Mokhdoeva, O.B., Zakharchenko, E.A., Myasiedova, G.V., and Kurakova, I.V., Blagorodnye I redkie metally Sibiri I Dal’nego Vostoka: rudoobrazuyushchie sistemy mestoriozhdenii kompleksnykh I netraditsionnykh tipov rud. Materialy nauchnoi konferentsii, Irkutsk: Izd. Inst. Geogr. SO RAN, 2005, vol. 2, pp. 231–234.

    Google Scholar 

  57. Mokhodoeva, O.B., Myasoedova, G.V., and Kubrakova, I.V., Zhurnal analiticheskoi khimii, 2007 (in press).

  58. Kubrakova, I.V., Myasoedova, G.V., Shumskaya, T.V., Zakharchenko, E.A., Kudinova, T.F., Mend. Comm., 2003, vol. 13, no. 6, pp. 249–250.

    Article  Google Scholar 

  59. Luque-García, J.L. and Luque de Castro, M.D., Trends in Analyt. Chem., 2003, vol. 22, no. 2, pp. 90–98.

    Article  Google Scholar 

  60. Morozova, V.S., Eremin, S.A., Nesterenko, P.N., Kluev, N.A., Shelepchikov, A.A., and Kubrakova, I.V., Zhurnal analiticheskoi khimii, 2007 (in press).

  61. Pletnev, I.V., Smirnova, S.V., Khachatryan, K.S., and Zernov, V.V., Zhurnal RkhO imeni D.I.Mendeleeva, 2004, vol. 58, no. 6, pp. 51–58.

    Google Scholar 

  62. Nguyen, H.P., Matondo, H., and Baboulene, M., Green Chem., 2003, vol. 5, no. 3, pp. 303–305.

    Article  CAS  Google Scholar 

  63. Hoffman, J., Nüchter, M., Ondrushka, B., and Wasserscheid, P., Green Chem., 2003, vol. 5, no. 3, pp. 296–299.

    Article  Google Scholar 

  64. Camel, V., Analyst, 2001, vol. 126, no. 7, pp. 1182–1193.

    Article  CAS  Google Scholar 

  65. Dean, J.R. and Xiong, G., Trends Analyt. Chem., 2000, vol. 19, no. 9, pp. 553–564.

    Article  CAS  Google Scholar 

  66. Macutkiewicz, E., Rompa, M., and Zygmunt, B., Crit. Rev. Analyt. Chem., 2003, vol. 33, no. 1, pp. 1–17.

    Article  CAS  Google Scholar 

  67. Lopez-Avila, V., Crit. Rev. Analyt. Chem., 1999, vol. 29, no. 3, pp. 195–230.

    Article  CAS  Google Scholar 

  68. Sangkhi, R. and Kannamkumaratkh, S.S., Zhurnal analiticheskoi knimii, 2004, vol. 59, no. 11, pp. 1145–1149.

    Google Scholar 

  69. Martens, D., Gferer, M., Wenzl, T., Zhang, A., Gawlik, B.M., Schramm K.-W., Lankmayr, E., and Kettrup, A., Analyt. Bioanalyt. Chem., 2002, vol. 372, no. 4, pp. 562–568.

    Article  CAS  Google Scholar 

  70. Cortazar, E., Bartolomé, L., Delgado, A., Etxebarria, N., Fernández, L.A., Usobiaga, A., and Zuloaga, O., Analyt. Chim. Acta, 2006, vol. 534, no. 2, pp. 177–355.

    Google Scholar 

  71. Microwaves in Organic Synthesis, Loupy, A., Ed., Weinheim: Wiley-VCH, 2002.

    Google Scholar 

  72. Siu, M., Yaylayan, V.A., Bélanger, J.M.R., and Paré, J.R.J., Tetrahedron Lett., 2005, vol. 46, no. 21, pp. 3737–3739.

    Article  CAS  Google Scholar 

  73. Siu, M., Yaylayan, V.A., Bélanger, J.M.R., and Paré, J.R.J., Tetrahedron Lett., 2005, vol. 46, no. 33, pp. 5543–5545.

    Article  CAS  Google Scholar 

  74. Dikusar, M.A., Kubrakova, I.V., Chinarev, A.A., and Bovin, N.V., Bioorganicheskaya knimiya, 2001, vol. 27, no. 6, pp. 457–461.

    CAS  Google Scholar 

  75. Petrova, N.V., Evtushenko, A.M., Chikhacheva, I.P., Zubov, V.P., and Kubrakova, I.V., Zhurnal prikladnoi khimii, 2005, vol. 78, no. 7, pp. 1178–1182.

    Google Scholar 

  76. Ziegler, M., Monney, V., Stoeckli-Evans, H., Von Zelewsky, A., Sasaki, I., Dupic, G., Daran, J.-C., and Balvoine, G.G.A., J. Chem. Soc., Dalton Trans., 1999, vol. 999, no. 5, pp. 667–675.

    Article  Google Scholar 

  77. Yoshikawa, N., Masuda, Y., Matsumura-Inoue, T., Chem. Lett., 2000, vol. 29, no. 10, pp. 1206–1207.

    Article  Google Scholar 

  78. Xiao, X., Sakamoto, J., Tanabe, M., Yamazaki, S., Yamabe, S., and Matsumura-Inoue, T., J. Electroanalyt. Chem., 2002, vol. 527, no. 1, pp. 33–40.

    Article  CAS  Google Scholar 

  79. Yoshikawa, N. and Matsumura-Inoue, T., Analyt. Sciences, 2003, vol. 19, no. 5, pp. 761–765.

    Article  CAS  Google Scholar 

  80. Pezet, F., Daran, J.C., Sasaki, I., Ait-Haddou, H., and Balavoine, G.G.A., Organomettalics, 2000, vol. 19, no. 20, pp. 4008–4015.

    Article  CAS  Google Scholar 

  81. Rau, S., Schäfer, B., Grüßing, A., Schebesta, S., Lamm, K., Vieth, J., Görls, H., Walther, D., Rudolph, M., Grumm, U.W., and Bikner, E., Inorg. Chim. Acta, 2004, vol. 357, no. 15, pp. 4496–4503.

    Article  CAS  Google Scholar 

  82. Matsumura-Inoue, T., Yamamoto, Y., Yoshikawa, N., Terashima, M., Youshida, Y., Fujii, A., and Yoshino, K., Opt. Materials, 2004, vol. 27, no. 2, pp. 187–191.

    Article  CAS  Google Scholar 

  83. Lu, Q., Gao, F., and Komarneni, S., J. Materials Online, http://www.azom.com/oars.asp, 2005, vol. 1.

  84. Gerbec, J.A., Magana, D., Washington, A., and Strouse, G.F., J. Am.Chem. Soc., 2005, vol. 127, no. 45, pp. 15791–15800.

    Article  CAS  Google Scholar 

  85. Li, L., Qian, H., and Ren, J., Chem. Comm., 2005, no. 4, pp. 528–530.

  86. Martínez, M.T., Callejas, M.A., Benito, A.M., Maser, W.K., Cochet, M., Andrés, J.M., Schreiber, J., Chauvet, O., and Fierro, J.L.G., Chem. Comm., 2002, no. 9, pp. 1000–1001.

  87. Gao, F., Lu, Q., and Komarneni, S., Chem. Materials, 2005, vol. 17, no. 4, pp. 856–860.

    Article  CAS  Google Scholar 

  88. Wang, W.W., Zhu, Y.J., Cheng, G.F., and Huang, Y.H., Materials Lett., 2006, vol. 60, no. 5, pp. 609–612.

    Article  CAS  Google Scholar 

  89. Inada, M., Tsujimoto, H., Eguchi, Y, Enomoto, N., and Hojo, J., Fuel, 2005, vol. 84, no. 12–13, pp. 1482–1486.

    CAS  Google Scholar 

  90. Tyagi, B., Chudasama, C.D., and Jasra, R.V., Applied Clay Science, 2006, vol. 31, no. 1–2, pp. 16–28.

    Article  CAS  Google Scholar 

  91. Lin, S.S., Wu, C.H., Sun, M.C., and Ho, Y.P., J. Amer. Soc. Mass Spectrometry, 2005, vol. 16, no. 4, pp. 581–588.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Kubrakova, E.S. Toropchenova, 2008, published in Zavodskaya Laboratoriya. Diagnostika materialov, 2008, Vol. 44, No. 14, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubrakova, I.V., Toropchenova, E.S. Microwave heating for enhancing efficiency of analytical operations (Review). Inorg Mater 44, 1509–1519 (2008). https://doi.org/10.1134/S0020168508140069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168508140069

Keywords

Navigation