Skip to main content
Log in

Phase transformations of Pb0.995La0.005[Zr0.95 − y Sn0.05(Mg1/3Nb2/3) y ]0.99875O3 solid solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

We have constructed phase diagrams of Pb0.995La0.005[Zr0.95 − y Sn0.05 (Mg1/3Nb2/3) y ]0.99875O3 (y = 0–0.02) solid solutions in different electric fields. Our results demonstrate that, by cooling in a constant electric field, the low-temperature rhombohedral ferroelectric phase can be stabilized in a narrow temperature range. It is shown that the phase state below the Curie temperature strongly depends on the temperature-field history of the material. In particular, the low-temperature rhombohedral ferroelectric phase only appears during cooling. At the same time, the temperature-field stability region of the tetragonal antiferroelectric phase is much broader during heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berlincourt, D., Jaffe, H., Krueger, H.H.A., and Jaffe, B., Release of Electric Energy in PbNb(Zr, Ti, Sn)O3 by Temperature and by Pressure-Enforced Phase Transitions, App. Phys. Lett., 1963, vol. 3, pp. 90–98.

    Article  CAS  Google Scholar 

  2. Jaffe, B., Cook, W.R., and Jaffe, H., Piezoelectric Ceramics, New York: Academic, 1964, p. 659.

    Google Scholar 

  3. Pan, W., Zhang, Q.M., Bhalla, A., and Cross, L.E., Field-Forced Antiferroelectric-to-Ferroelectric Switching in Modified Lead Zirconate Titanate Stannate Ceramics, J. Am. Ceram. Soc., 1989, vol. 72, no. 4, pp. 571–578.

    Article  CAS  Google Scholar 

  4. Zhou, L., Zhao, Z., Zimmermen, A., et al., Preparation and Properties of Lead Zirconate Stannate Titanate Sintered by Spark Plasma Sintering, J. Am. Ceram. Soc., 2004, vol. 87, no. 4, pp. 606–611.

    Article  CAS  Google Scholar 

  5. Xu, Z., Zhai, J., Chan, W.-H., and Chen, H., Phase Transformation and Electric Field Tunable Pyroelectric Behavior of Pb(Nb,Zr,Sn,Ti)O3 and (Pb,La)(Zr,Sn,Ti)O3 Antiferroelectric Thin Films, Appl. Phys. Lett., 2006, vol. 88, p. 132 908.

    Google Scholar 

  6. Uchino, K. and Nomura, S., Electrostriction in PZT-Family Antiferroelectrics, Ferroelectrics, 1983, vol. 50, no. 1, pp. 191–196.

    Article  Google Scholar 

  7. Forst, D., Li, J.-F., and Viehland, D., Observation of Multiple Electrically Induced Phase Transitions and a Decoupling of the Induced Strain and Polarization in Sn-Modified Lead Zirconate Titanate, Appl. Phys. Lett., 1997, vol. 71, no. 11, pp. 1472–1474.

    Article  CAS  Google Scholar 

  8. Zhou, L., Rixecker, G., Zimmermann, A., and Aldinger F., Electric Fatigue in Antiferroelectric Pb0.97La0.02(Zr0.55Sn0.33Ti0.12)O3 Ceramics Induced by Bipolar Cycling, J. Eur. Ceram. Soc., 2006, vol. 26, pp. 883–889.

    Article  CAS  Google Scholar 

  9. Chan, W.-H., Xu, Z., Zhang, Y., et al., Microstructural Evolution and Macroscopic Property Relationship in Antiferroelectric Lead Lanthanum Stannate Zirconate Titanate Ceramics, J. Appl. Phys., 2003, vol. 94, no. 7, pp. 4563–4565.

    Article  CAS  Google Scholar 

  10. Chan, W.-H., Xu, Z., Hung, T.F., and Chen, H., Effect of La Substitution on Phase Transitions in Lead Zirconate Stannate Titanate (55/35/10) Ceramics, J. Appl. Phys., 2004, vol. 96, no. 11, pp. 6606–6610.

    Article  CAS  Google Scholar 

  11. Olsen, R.B., Butler, W.F., Payne, D.A., et al., Observation of a Polarocaloric (Electrocaloric) Effect of 2°C in Lead Zirconate Modified with Sn4+ and Ti4+, Phys. Rev. Lett., 1980, vol. 45, no. 17, pp. 1436–1438.

    Article  CAS  Google Scholar 

  12. Mischenko, A.S., Zhang, Q., Scott, J.F., et al., Science, 2006, vol. 311.

  13. Bikyashev, E.A. and Lisnevskaya, I.V., Effect of Nb5+ on Dipole Order in Pb(1−x)/2Zr(1−x) NbxO3 Ceramics, in Khimiya tverdogo tela i funktsional’nye materialy (Solid-State Chemistry and Functional Materials), Yekaterinburg, 2004, p. 243.

  14. Schmidt, G., Borchhardt, G., Von Cieminski, J., et al., Electromechanical Properties of Ferroelectrics with Diffuse Phase Transition, Ferroelectrics, 1982, vol. 42, nos. 1–2, pp. 3–9.

    Google Scholar 

  15. Michel, C., Moreau, J.-M., Andenbach, G.D., et al., Atomic Structures of Two Rhombohedral Ferroelectric Phases in the Pb(Zr,Ti)O3 Solid Solution Series, Solid State Commun., 1969, vol. 12, no. 7, pp. 865–868.

    Article  Google Scholar 

  16. Yang, P., Burns, G.R., and Rodriguez, M.A., Field-Induced Strain Associated with Polarization Reversal in a Rhombohedral Ferroelectric Ceramics, J. Mater. Res., 2003, vol. 18, no. 12, pp. 2869–2873.

    Article  CAS  Google Scholar 

  17. Glaser, A.M., Mabud, S.A., and Clarke, R., Profile Refinement of Lead Zirconate-Titanate at Several Temperatures: Part I. PbZr0.9Ti0.1O3, Acta Crystallogr., Sect. B, 1978, vol. 34, no. 4, pp. 1060–1065.

    Article  Google Scholar 

  18. Ujma, Z., Handerek, J., Pawetczyk, M., et al., The Antiferroelectric-Ferroelectric-Paraelectric Phase Sequence in Lead-Lanthanum-Zirconate-Titanate Ceramics with 8% Ti Content, J. Phys.: Condens. Matter, 1994, vol. 6, no. 10, pp. 6843–6856.

    Article  CAS  Google Scholar 

  19. Takenaka, T., Bhalla, A.S., Cross, L.E., and Sakata, K., Dielectric, Piezoelectric, and Pyroelectric Properties of Lead Zirconate-Lead Zinc Niobate Ceramics, J. Am. Ceram. Soc., 1989, vol. 72, no. 6, pp. 1016–1023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Bikyashev.

Additional information

Original Russian Text © E.A. Bikyashev, E.A. Reshetnikova, I.V. Lisnevskaya, T.G. Lupeiko, 2008, published in Neorganicheskie Materialy, 2008, Vol. 44, No. 6, pp. 706–713.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikyashev, E.A., Reshetnikova, E.A., Lisnevskaya, I.V. et al. Phase transformations of Pb0.995La0.005[Zr0.95 − y Sn0.05(Mg1/3Nb2/3) y ]0.99875O3 solid solutions. Inorg Mater 44, 615–621 (2008). https://doi.org/10.1134/S0020168508060137

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168508060137

Keywords

Navigation