Skip to main content
Log in

Synthesis and properties of nanocrystalline 90 wt % ZrO2〈Y2O3, CeO2〉-10 wt % Al2O3 powder

  • Published:
Inorganic Materials Aims and scope

Abstract

Using hydrothermal treatment of coprecipitated hydroxides, we have prepared nanocrystalline ZrO2-rich ZrO2-Y2O3-CeO2-Al2O3 powder. The effect of heat treatment on the properties of the powder has been studied in the temperature range 400–1300°C. The powder has been shown to have a metastable phase composition, which is attributable to structural and size factors and also to the fact that the ZrO2 and Al2O3 crystallites inhibit the growth of each other. Sintering the powder under various conditions, we have obtained ceramics with fracture toughnesses from 6.4 to 16.8 MPa m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shevchenko, A.V., Ruban, A.K., and Dudnik, E.V., Advanced Zirconia Ceramics, Ogneupory Tekh. Keram., 2000, no. 9, pp. 2–8.

  2. Lin, J.-D. and Duh, J.-G., Fracture Toughness and Hardness of Ceria-and Yttria-Doped Tetragonal Zirconia Ceramics, Mater. Chem. Phys., 2002, vol. 78, pp. 253–261.

    Article  CAS  Google Scholar 

  3. Bastide, B., Canale, P., and Odier, P., Characterization of a New Ternary Ce-T-Tetragonal Zirconia, J. Eur. Ceram. Soc., 1989, vol. 5, pp. 289–293.

    Article  CAS  Google Scholar 

  4. Lange, F.F., Transformation Toughening: Part 4. Fabrication, Fracture Toughness, and Strength of Al2O3-ZrO2 Composites, J. Mater. Sci., 1982, vol. 17, pp. 247–254.

    Article  CAS  Google Scholar 

  5. Tsubakino, H., Nozato, R., and Hamamoto, M., Effect of Alumina Addition on the Tetragonal-to-Monoclinic Phase Transformation in Zirconia-3 mol.% Yttria, J. Am. Ceram. Soc., 1991, vol. 74, no. 2, pp. 440–443.

    Article  CAS  Google Scholar 

  6. Li, J.-F. and Watanabe, R., Fracture Toughness of Al2O3-Particle Dispersed Y2O3-Partially Stabilized Zirconia, J. Am. Ceram. Soc., 1995, vol. 78, no. 4, pp. 1079–1082.

    Article  CAS  Google Scholar 

  7. Shevchenko, A.V., Dudnik, E.V., Dubok, V.A., et al., Biocompatible Implants Based on Nanocrystalline ZrO2 Powders, Tekh. Mashinostr., 2006, no. 2(58), pp. 32–35.

    Google Scholar 

  8. Shevchenko, A.V., Dudnik, E.V., Ruban, A.K., et al., Graded Microlaminar Ceramics for Medical Applications, Tekh. Mashinostr., 2006, no. 2(58), pp. 36–40.

    Google Scholar 

  9. Tananaev, I.V., Fedorov, V.B., Morokhov, I.D., et al., Physical Chemistry and Potential Applications of Metastable Ultradisperse Materials, Izv. Akad. Nauk SSSR, Neorg. Mater., 1984, vol. 20, no. 6, pp. 1026–1033.

    CAS  Google Scholar 

  10. Tsukada, T., Venigalla, S., Morrone, A.A., and Adair, J.H., Low-Temperature Hydrothermal Synthesis of Yttrium-Doped Zirconia Powders, J. Am. Ceram. Soc., 1999, vol. 82, no. 5, pp. 1169–1174.

    Article  CAS  Google Scholar 

  11. Somiya, S. and Roy, R., Hydrothermal Synthesis of Fine Oxide Powders, Bull. Mater. Sci., 2000, vol. 23, no. 6, pp. 453–460.

    Article  CAS  Google Scholar 

  12. Shevchenko, A.V., Ruban, A.K., Dudnik, E.V., and Mel’nikova, V.A., Hydrothermal Synthesis of Ultrafine Zirconia Powders, Poroshk. Metall., 1997, nos. 7–8, pp. 74–80.

  13. Pozhidaeva, O.V., Korytkova, E.N., Romanov, D.P., and Gusarov, V.V., Formation of Nanocrystalline Zirconia in Various Hydrothermal Environments, Zh. Obshch. Khim., 2002, vol. 72, no. 6, pp. 910–914.

    Google Scholar 

  14. Al’myasheva, O.V., Korytkova, E.N., Maslov, A.V., and Gusarov, V.V., Preparation of Nanocrystalline Alumina under Hydrothermal Conditions, Neorg. Mater., 2005, vol. 41, no. 5, pp. 540–547 [Inorg. Mater. (Engl. Transl), vol. 41, no. 5, pp. 460–467].

    Google Scholar 

  15. Al’myasheva, O.V. and Gusarov, V.V., Effect of Nanocrystalline ZrO2 on the Stabilization of Amorphous Alumina and Silica in the Systems ZrO2-Al2O3 and ZrO2-SiO2, Fiz. Khim. Stekla, 2006, vol. 32, no. 2, pp. 224–229.

    Google Scholar 

  16. Lin, J.D. and Duh, J.G., Coprecipitation and Hydrothermal Synthesis of Ultrafine 5.5 mol. % CeO2-2 mol. % Y2O3-ZrO2 Powders, J. Am. Ceram. Soc., 1997, vol. 80, no. 1, pp. 92–98.

    Article  CAS  Google Scholar 

  17. Sawaki, Y., Matsuo, K., and Kishimoto, M., Hydrothermal Synthesis of Nanosize Oxide Particles, J. Ceram. Soc. Jpn., 2004, vol. 112, no. 5, pp. 17–20.

    Google Scholar 

  18. Kolen’ko, Yu.V., Meskin, P.E., Mukhanov, V.A., et al., Effect of the Nature of Cations on the Phase Composition of Nanocrystalline Titania-like Dioxides Prepared via Hydrothermal Treatment of Amorphous Hydroxide Gels, Zh. Neorg. Khim., 2005, vol. 50, no. 12, pp. 1941–1946.

    Google Scholar 

  19. Niihara Morena, R. and Hasselman, D.P.H., Evaluation of K 1c of Brittle Solids by the Indentation Method with Low Crack-to Indent Ratios, J. Mater. Sci. Lett., 1982, vol. 1, no. 1, pp. 13–16.

    Article  Google Scholar 

  20. Levin, I. and Brandon, D., Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences, J. Am. Ceram. Soc., 1998, vol. 81, no. 8, pp. 1995–2012.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Dudnik.

Additional information

Original Russian Text © E.V. Dudnik, A.V. Shevchenko, A.K. Ruban, V.P. Red’ko, L.M. Lopato, 2008, published in Neorganicheskie Materialy, 2008, Vol. 44, No. 4, pp. 477–481.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudnik, E.V., Shevchenko, A.V., Ruban, A.K. et al. Synthesis and properties of nanocrystalline 90 wt % ZrO2〈Y2O3, CeO2〉-10 wt % Al2O3 powder. Inorg Mater 44, 409–413 (2008). https://doi.org/10.1134/S0020168508040158

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168508040158

Keywords

Navigation