Skip to main content
Log in

Microhardness of silicon layers grown by liquid phase epitaxy

  • Published:
Inorganic Materials Aims and scope

Abstract

The microhardness of silicon epilayers grown from Sn fluxes is found to be lower than that of the silicon substrates and to significantly depend on the crystallographic orientation of the substrates. The microhardness values follow a Gaussian distribution in all of the epilayers. Unintentional impurities are shown to have a significant effect on the microhardness of the epilayers. The addition of ytterbium to the high-temperature solution reduces the microhardness of the epilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binetti, S., Pizzini, S., Cavallini, A., and Fraboni, B., Erbium Doped Silicon Epilayers Grown by Liquid Phase Epitaxy, Phys. Tech. Semicond., 1999, vol. 33, no. 6, pp. 642–643.

    Google Scholar 

  2. Gerasimov, A.B. and Chiradze, G.D., Influence of the Nature and Concentration of Shallow Impurities on the Microhardness and Photomechanical Effect of Semiconductors, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 2001, vol. 36, no. 4, pp. 385–386.

    Google Scholar 

  3. Kulish, U.M., Gamidov, Z.S., and Kuznetsova, I.Yu., Microhardness of Rare-Earth-Doped GaAs Epilayers, Izv. Akad. Nauk SSSR, Neorg. Mater., 1989, vol. 25, no. 10, pp. 1741–1743.

    CAS  Google Scholar 

  4. Arbenina, V.V. and Kabanova, E.G., Mechanical Properties of Doped Gallium Arsenide Epilayers, Neorg. Mater., 1999, vol. 35, no. 12, pp. 1420–1424 [Inorg. Mater. (Engl. Transl.), vol. 35, no. 12, pp. 1213–1216].

    Google Scholar 

  5. Brinkevich, D.I., Vabishchevich, S.A., Vabishchevich, N.V., et al., Effect of Rare-Earth Doping on the Microhardness of Silicon and Germanium, Neorg. Mater., 2003, vol. 39, no. 11, pp. 1287–1289 [Inorg. Mater. (Engl. Transl.), vol. 39, no. 11, pp. 1109–1111].

    Article  Google Scholar 

  6. Vabishchevich, S.A., Vabishchevich, N.V., and Brinkevich, D.I., Microhardness of Silicon Wafers after Gettering Treatment, Perspekt. Mater., 2005, no. 2, pp. 20–22.

  7. Nistiryuk, I.V. and Seregin, P.P., State of Tin Impurity in Silicon, Fiz. Tverd. Tela (Leningrad), 1975, vol. 17, no. 4, pp. 1192–1194.

    CAS  Google Scholar 

  8. Kalosha, V.K., Lobko, S.I., and Chikova, T.S., Matematicheskaya obrabotka rezul’tatov eksperimenta (Mathematical Methods for Data Processing), Minsk: Vysshaya Shkola, 1982.

    Google Scholar 

  9. Mezhennyi, M.V., Yugova, T.G., Bochkarev, A.E., et al., Composition-Dependent Microhardness of Epitaxial Layers of Quaternary Solid Solutions between III–V Compounds, Izv. Akad. Nauk SSSR, Neorg. Mater., 1990, vol. 26, no. 8, pp. 1601–1604.

    CAS  Google Scholar 

  10. Gerasimov, A.B., Chiradze, G.D., Kazarov, R.E., et al., Physical Nature of Microhardness Variations with Depth, Fiz. Khim. Obrab. Mater., 2004, no. 3, pp. 71–74.

  11. Glazov, V.M. and Vigdorovich, V.N., Mikrotverdost’ metallov i poluprovodnikov (Microhardness of Metals and Semiconductors), Moscow: Metallurgiya, 1969.

    Google Scholar 

  12. Brinkevich, D.I., Vabishchevich, S.A., and Petrov, V.V., Effects of Group IIIB and IV Impurities on the Microhardness of Single-Crystal Silicon, Mikroelektronika, 1997, vol. 26, no. 4, pp. 297–300.

    Google Scholar 

  13. Brinkevich, D.I., Kazyuchits, N.M., Kryukov, V.L., et al., Silicon Epilayers Grown from Sn-Based Fluxes, Neorg. Mater., 1992, vol. 28, no. 3, pp. 472–475.

    CAS  Google Scholar 

  14. Sapaev, B., Saidov, A.S., and Ibragimov, Sh.I., Photoelectric Properties of Si Epilayers Grown from Sn-Metallurgical-Grade Si Melts, Pis’ma Zh. Tekh. Fiz., 2005, vol. 31, no. 12, pp. 56–62.

    Google Scholar 

  15. Sapaev, B. Lifetime of Minority Carriers in Polycrystalline Silicon Treated in Liquid Solvents, Pis’ma Zh. Tekh. Fiz., 2003, vol. 29, no. 20, pp. 64–68.

    Google Scholar 

  16. Shrikov, V.V., Pavlyna, O.V., and Shirokov, O.V., Effect of Dynamic Blocking of Dislocations by Interstitial Atoms on Mechanical Properties of Metals and Alloys, Funct. Mater., 2004, vol. 11, no. 2, pp. 405–409.

    Google Scholar 

  17. Borshchenskii, V.V., Brinkevich, D.I., Gorbacheva, N.I., et al., Influence of Germanium and Gadolinium Doping on the Thermal Stability of Single-Crystal Dislocation-Free Silicon, Vysokochist. Veshchestva, 1991, no. 4, pp. 61–64.

  18. Afanas’eva, N.P., Brinkevich, D.I., Prosolovich, V.S., and Yankovskii, Yu.N., Lanthanide Doping of Silicon As a Way of Enhancing the Performance of Nuclear Detectors, Prib. Tekh. Eksp., 2002, no. 3, pp. 24–26.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Brinkevich.

Additional information

Original Russian Text © D.I. Brinkevich, S.A. Vabishchevich, V.S. Prosolovich, 2007, published in Neorganicheskie Materialy, 2007, Vol. 43, No. 10, pp. 1159–1163.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkevich, D.I., Vabishchevich, S.A. & Prosolovich, V.S. Microhardness of silicon layers grown by liquid phase epitaxy. Inorg Mater 43, 1035–1039 (2007). https://doi.org/10.1134/S0020168507100019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168507100019

Keywords

Navigation