Skip to main content
Log in

Toroidal solitons in magnetic oxides, Bose-Einstein condensates, and other media

  • Published:
Inorganic Materials Aims and scope

Abstract

We consider toroidal soliton solutions in a number of nonlinear models of field theory (Skyrme, Faddeev, and Higgs models). Such models are used in various areas of solid-state chemistry and physics, chemical physics, astrophysics, and plasma chemistry and physics. The stability of toroidal solitons is shown to have a topological nature. We examine different methods of generating a nonlinear contribution to the Lagrangian in order to insure stability of the torus to collapse. Using the Faddeev and Skyrme models, we analyze the toroidal ordering in Bose-Einstein condensates of 23Na, 39K, and 87Rb alkali-metal atoms, the toroidal structures recently found in the magnetic oxides BiFeO3 and GaFeO3, and potential applications of such structures in spintronics. In addition, we address several critical issues in the chemistry and physics of solitons with high topological charges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamb, G.L., Jr., Elements of Soliton Theory, New York: Wiley, 1980.

    MATH  Google Scholar 

  2. Rajaraman, R., Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory, Amsterdam: North-Holland, 1982.

    MATH  Google Scholar 

  3. Dodd, R.K., Eilbeck, J.C., Gibbon, J., and Morris, H.C., Solitons and Nonlinear Wave Equations, New York: Academic Press, 1982.

    MATH  Google Scholar 

  4. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Berlin: Springer, 1987.

    MATH  Google Scholar 

  5. Zahed, I. and Brown, G.E., The Skyrme Model, Phys. Rep., Ser. C, 1986, vol. 142, nos. 1–2, pp. 1–102.

    Article  MathSciNet  ADS  Google Scholar 

  6. Nikolaev, V.A., Skyrme Model: Nucleons, Dibaryons, and Nuclei, Fiz. Elem. Chastits At. Yadra, 1989, vol. 20, no. 2, pp. 401–439.

    CAS  Google Scholar 

  7. Nikolaeva, R.M. and Nikolaev, V.A., Nucleus-like States in the SU(2) Skyrme Model, Fiz. Elem. Chastits At. Yadra, 1992, vol. 23, no. 2, pp. 542–571.

    CAS  Google Scholar 

  8. Makhan’kov, V.G., Rybakov, Yu.P., and Sanyuk, V.I., Skyrme Model and Strong Interactions, Usp. Fiz. Nauk, 1992, vol. 162, no. 2, pp. 1–61.

    Article  Google Scholar 

  9. Rybakov, Yu.P. and Sanyuk, V.I., Mnogomernye solitony (Multidimensional Solitons), Moscow: Ross. Univ. Druzhby Narodov, 2001.

    Google Scholar 

  10. Polyakov, A.M., Kalibrovochnye polya i struny (Calibration Fields and Strings), Chernogolovka: Inst. Teor. Fiz., 1995.

    Google Scholar 

  11. Itzykson, C. and Zuber, J.-B., Quantum Field Theory, New York: McGraw-Hill, 1980, vol. 2.

    Google Scholar 

  12. Skyrme, T.H.R., Nonlinear Field Theory, Proc. R. Soc. London, A, 1961, vol. 260, pp. 127–138.

    MATH  MathSciNet  ADS  CAS  Google Scholar 

  13. Faddeev, L.D, Einstein and Several Contemporary Tendencies in the Theory of Elementary Particles, Relativity, Quanta, and Cosmology in the Development of Scientific Thoughts of Albert Einstein, De Finis, F., Ed., New York: Johnson Repr., 1979, vol. 1, pp. 247–266.

    Google Scholar 

  14. Ruostekoski, J. and Anglin, J.R., Creating Vortex Rings and Three-Dimensional Skyrmions in Bose-Einstein Condensates, Phys. Rev. Lett., 2001, vol. 86, no. 18, pp. 3934–3937.

    Article  PubMed  CAS  ADS  Google Scholar 

  15. Girvin, S., Kvantovyi effekt Kholla (Quantum Hall Effect), Moscow-Izhevsk: IKI, 2003.

    Google Scholar 

  16. Jaikumar, P. and Ouyed, R., Skyrmion Stars: Astrophysical Motivations and Implications, astro-ph/0504075, 2005, vol. 3, pp. 1–28.

    Google Scholar 

  17. King, R.B., Skyrmion Models for 3D Aromaticity in Deltahedral Boranes, Chem. Phys. Lett., 2001, vol. 338, pp. 237–240.

    Article  CAS  Google Scholar 

  18. Jackson, B., McCann, J.F., and Adams, C.S., Vortex Line and Ring Dynamics in Trapped Bose-Einstein Condensates, Phys. Rev. A, 1999, vol. 61, no. 1, p. 013 604.

  19. Battye, R.A., Cooper, N.R., and Sutcliffe, P.M., Stable Skyrmions in Two Component Bose-Einstein Condensates, cond-mat/0109448, 2001, vol. 2, pp. 1–4.

    Google Scholar 

  20. Kosevich, A.M., Ivanov, B.A., and Kovalev, A.S., Nelineinye volny namagnichennosti: dinamicheskie i topologicheskie solitony (Nonlinear Magnetization Waves: Dynamic and Topological Solitons), Kiev: Naukova Dumka, 1983.

    Google Scholar 

  21. Kalashnikova, A.M., Pisarev, R.V., and Bezmaternyukh, L.N., Optical and Magneto-optical Studies of Multiferroic GaFeO3 with High Curie Temperature, JETP Lett., 2005, vol. 81, no. 9, pp. 452–453.

    Article  CAS  Google Scholar 

  22. Popov, Yu.F., Kadomtseva, A.M., Krotov, S.S., et al., Magnetoelectric Properties of BiFeO3 in Strong Magnetic Fields, Fiz. Nizk. Temp. (Kiev), 2001, vol. 27, no. 6, pp. 649–651.

    Google Scholar 

  23. Mitkevich, V.F., Magnitnyi potok i ego preobrazovanie (Magnetic Flux and Its Transformation), Moscow: Akad. Nauk SSSR, 1946.

    Google Scholar 

  24. Enz, U.A., New Type of Soliton with Particle Properties, J. Math. Phys., 1977, vol. 18, no. 3, pp. 347–353.

    Article  ADS  Google Scholar 

  25. Derrick, G.H., Comments on Nonlinear Wave Equations as a Model for Elementary Particles, J. Math. Phys., 1964, vol. 5, no. 9, pp. 1252–1254.

    Article  CAS  MathSciNet  Google Scholar 

  26. De Vega, H.J., Closed Vertex and the Hopf Index in Classical Field Theory, Phys. Rev. D: Part. Fields, 1978, vol. 18, no. 8, pp. 2945–2951.

    Google Scholar 

  27. Gipson, J.M. and Tze, H.C., Possible Heavy Solitons in the Strongly Coupled Higgs Sector, Nucl. Phys. B, 1981, vol. 183, no. 3, pp. 524–546.

    Article  MathSciNet  ADS  Google Scholar 

  28. Rybakov, Yu.P. and Fomin, M.B., Models for Interaction of Topological Solitons, Vestn. Ross. Univ. Druzhby Narodov, Ser. Fiz., 2004, no. 12, pp. 41–49.

  29. Kundu, A. and Rybakov, Yu.P., Closed Vortex Type Solutions with Hopf Index, J. Phys. A, 1982, vol. 15, pp. 269–275.

    Article  MathSciNet  ADS  Google Scholar 

  30. Faddeev, L. and Niemi, A.J., Stable Knot-like Structures in Classical Field Theory, Nature, 1997, vol. 387, pp. 59–61.

    Article  Google Scholar 

  31. Faddeev, L. and Niemi, A.J., Toroidal Configurations as Stable Solitons, hep-th/9705176, 1997, vol. 1, pp. 1–20.

    Google Scholar 

  32. Gladikowski, J. and Hellmund, M., Static Solitons with Non-zero Hopf Number, hep-th/9609035, 1997, vol. 2, pp. 1–15.

    Google Scholar 

  33. Battye, R.A. and Sutcliffe, P.M., To Be or Not to Be, hep-th/9808129, 1998, vol. 1, pp. 1–7.

    Google Scholar 

  34. Battye, R.A. and Sutcliffe, P.M., Solitons, Links, and Knots, hep-th/9811077, 1998, vol. 1, pp. 1–22.

    Google Scholar 

  35. Braaten, E. and Carson, L., Deuteron as a Toroidal Skyrmion, Phys. Rev. D: Part. Fields, 1988, vol. 38, no. 11, pp. 3525–3539.

    CAS  Google Scholar 

  36. Braaten, E., Townsend, S., and Carson, L., Novel Structure of Static Multisoliton Solutions in the Skyrme Model, Phys. Lett. A, 1990, vol. 235, nos. 1–2, pp. 147–152.

    CAS  Google Scholar 

  37. Battye, R.A. and Sutcliffe, P.M., Symmetric Skyrmions, Phys. Rev. Lett., 1997, vol. 79, no. 3, pp. 363–366.

    Article  CAS  ADS  Google Scholar 

  38. Babaev, E., Faddeev, L.D., and Niemi, A.J., Hidden Symmetry and Knot Solitons in a Charged Two-Component Bose System, cond-mat/0106152, 2002, vol. 3, pp. 1–5.

    Google Scholar 

  39. Binning, G., Baratoff, A., Hoenig, H.E., and Bednortz, J.G., Two-Band Superconductivity in Nb-Doped SrTiO3, Phys. Rev. Lett., 1980, vol. 45, no. 16, pp. 1352–1355.

    Article  ADS  Google Scholar 

  40. Szabo, P., Samuely, P., Kacmarcik, J., et al., Evidence for Two Superconducting Energy Gaps in MgB2 by Point-Contact Spectroscopy, Phys. Rev. Lett., 2001, vol. 87, no. 13, pp. 137005–137007.

    Article  PubMed  CAS  ADS  Google Scholar 

  41. Pismen, L. and Rica, S., Fermions on Vortex Ring, Phys. Rev. D: Part. Fields, 2002, vol. 66, no. 4, p. 045004.

  42. Jakiw, R. and Rossi, P., Zero Modes of the Vortex-Fermion System, Nucl. Phys. B, 1981, vol. 190, no. 3, pp. 681–691.

    Article  ADS  Google Scholar 

  43. Nielsen, H.B. and Olesen, P., Vortex-Line Models for Dual Strings, Nucl. Phys. B, 1973, vol. 61, no. 1, pp. 45–61.

    Article  MathSciNet  ADS  Google Scholar 

  44. Donnely, R.J., Quantized Vortices in Helium II, Cambridge: Cambridge Univ., 1991.

    Google Scholar 

  45. Al Khawaja, U. and Stoof, H., Skyrmions in Ferromagnetic Bose-Einstein Condensate, Nature, 2001, vol. 411, no. 6840, pp. 918–920.

    Article  PubMed  CAS  Google Scholar 

  46. Dzyaloshinskii, I.E. and Ivanov, B.A., Localized Topological Solitons in Ferromagnets, Pis’ma Zh. Eksp. Teor. Fiz., 1979, vol. 29, no. 9, pp. 592–595.

    Google Scholar 

  47. Tomashpol’skii, Yu.Ya., Skorikov, V.M., Venevtsev, Yu.N., and Speranskaya, E.I., Growth and Structural Characterization of Magnetoelectric BiFeO3 Single Crystals, Izv. Akad. Nauk SSSR, Neorg. Mater., 1966, vol. 2, no. 4, pp. 707–711.

    CAS  Google Scholar 

  48. Atiyah, M.F. and Manton, N.S., Skyrmions from Instantons, Phys. Lett. A., 1989, vol. 222, nos. 3–4, pp. 438–442.

    CAS  MathSciNet  Google Scholar 

  49. Fujii, K., Otsuki, S., and Toyoda, F., A Soliton Solution with Baryon Number B = 0 and Skyrmion, Prog. Theor. Phys., 1985, vol. 73, no. 2, pp. 524–527.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  50. Kalinkin, A.N. and Skorikov, V.M., Toroidal Solitons in Magnetic Oxides: Faddeev Model, Neorg. Mater., 2006, vol. 42, no. 4, pp. 481–484 [Inorg. Mater. (Engl. Transl.), vol. 42, no. 4, pp. 427–430].

    Article  CAS  Google Scholar 

  51. Borukhovich, A.S., Viglin, N.A., and Osipov, V.V., Spin-Polarized Transport and Submillimeter Spectroscopy of Solids, Fiz. Tverd. Tela (S.-Peterburg), 2002, vol. 44, no. 5, pp. 898–905.

    Google Scholar 

  52. Green, A.G., Kogan, I.I., and Tsvelik, A.M., Skyrmions in the Quantum Hall Effect at Finite Zeeman Coupling, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, vol. 54, no. 23, pp. 1638–1650.

    Google Scholar 

  53. Klebanov, I., Nuclear Matter in the Skyrme Model, Nucl. Phys. B, 1985, vol. 262, no. 1, pp. 133–143.

    Article  ADS  Google Scholar 

  54. Kugler, M. and Shtrikman, S., A New Skyrmion Crystal, Phys. Lett. B, 1988, vol. 208, nos. 3–4, pp. 491–494.

    Article  CAS  ADS  Google Scholar 

  55. Battye, R.A. and Sutcliffe, P.M., Skyrmions, Fullerenes, and Rational Maps, Rev. Math. Phys., 2002, vol. 14, no. 1, pp. 29–86.

    Article  MATH  MathSciNet  Google Scholar 

  56. Battye, R.A., Houghton, C.J., and Sutcliffe, P.M., Icosahedral Skyrmions, J. Math. Phys., 2003, vol. 44, no. 8, pp. 3543–3554.

    Article  MATH  CAS  MathSciNet  ADS  Google Scholar 

  57. Battye, R.A. and Sutcliffe, P.M., Symmetric Skyrmions, Phys. Rev. Lett., 1997, vol. 79, no. 3, pp. 363–366.

    Article  CAS  ADS  Google Scholar 

  58. Battye, R.A. and Sutcliffe, P.M., A Skyrme Lattice with Hexagonal Symmetry, Phys. Lett. B, 1998, vol. 416, nos. 3–4, pp. 385–391.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  59. Yang, L., Jiang, J., and Dong, J., Formation Mechanism of Toroidal Carbon Nanotubes, Phys. Status Solidi B, 2003, vol. 238, no. 1, pp. 115–119.

    Article  CAS  ADS  Google Scholar 

  60. Sano, M., Ring Closure of Carbon Nanotubes, Science, 2001, vol. 293, no. 5533, pp. 1299–1300.

    Article  PubMed  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Kalinkin, V.M. Skorikov, 2007, published in Neorganicheskie Materialy, 2007, Vol. 43, No. 5, pp. 600–610.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinkin, A.N., Skorikov, V.M. Toroidal solitons in magnetic oxides, Bose-Einstein condensates, and other media. Inorg Mater 43, 526–536 (2007). https://doi.org/10.1134/S0020168507050160

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168507050160

Keywords

Navigation