Skip to main content
Log in

Preparation and properties of hydrogen-storage composites in the MgH2-C system

  • Published:
Inorganic Materials Aims and scope

Abstract

The hydriding properties of magnesium have been studied at temperatures from 670 to 720 K and pressures from 19 to 55 MPa. The results suggest that the hydrogen pressure and hydrogen absorption/desorption cycles influence the nucleation process in the Mg-H2 system. Using mechanical activation of MgH2 + graphite and MgH2 + graphene nanofiber (GNF) mixtures, we have prepared MgH2/graphite and MgH2/NGF composites. Investigation of their hydriding properties has shown that mechanical activation markedly accelerates hydrogen sorption/desorption processes and reduces the thermal stability of the material compared to unmilled magnesium hydride. The mechanisms of hydrogen desorption from the composites in different stages of their thermal decomposition are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Konstanchuk, I.G., Ivanov, E.Yu., and Boldyrev, V.V., Interaction of Hydrogen with Alloys and Intermetallic Compounds Prepared Mechanochemically, Usp. Khim., 1998, vol. 67, no. 1, pp. 75–86.

    CAS  Google Scholar 

  2. Zaluska, A., Zaluski, L., and Strom-Olsen, J.O., Nanocrystalline Magnesium for Hydrogen Storage, J. Alloys Compd., 1999, vol. 288, pp. 217–225.

    Article  CAS  Google Scholar 

  3. Huot, J., Liang, G., and Shulz, R., Mechanically Alloyed Metal Hydride Systems, Appl. Phys. A, 2001, vol. 72, pp. 187–195.

    Article  CAS  Google Scholar 

  4. Imamura, H., Takesue, Y., Akimoto, T., and Tabata, Sh., Hydrogen-Absorbing Magnesium Composites Prepared by Mechanical Grinding with Graphite: Effects of Additives on Composite Structures and Hydriding Properties, J. Alloys Compd., 1999, vol. 293, pp. 564–568.

    Article  Google Scholar 

  5. Bobet, J.-L., Grigorova, E., Khrussanova, M., et al., Hydrogen Sorption Properties of Graphite-Modified Magnesium Nanocomposites Prepared by Ball-Milling, J. Alloys Compd., 2004, vol. 366, pp. 298–302.

    Article  CAS  Google Scholar 

  6. Imamura, H., Kusuhara, M., Minami, S., et al., Carbon Nanocomposites Synthesized by High-Energy Mechanical Milling of Graphite and Magnesium for Hydrogen Storage, Acta Mater., 2003, vol. 51, pp. 6407–6414.

    Article  CAS  Google Scholar 

  7. Imamura, H., Masanari, K., Kusuhara, M., et al., High Hydrogen Storage Capacity of Nanosized Magnesium Synthesized by High Energy Ball-Milling, J. Alloys Compd., 2005, vol. 386, pp. 211–216.

    Article  CAS  Google Scholar 

  8. Dal Toe, S., Lo Russo, S., Maddalena, A., et al., Hydrogen Desorption from Magnesium Hydride-Graphite Nanocomposites Produced by Ball Milling, Mater. Sci. Eng., B, 2004, vol. 108, pp. 24–27.

    Article  CAS  Google Scholar 

  9. Klyamkin, S.N., Lukashev, R.V., Tarasov, B.P., et al., Hydrogen-Sorbing Magnesium-Based Composites, Materialovedenie, 2005, no. 9, pp. 53–56.

  10. Wu, C.Z., Wang, P., Yao, X., et al., Effect of Carbon/Noncarbon Addition on Hydrogen Storage Behaviors of Magnesium Hydride, J. Alloys Compd., 2006 (in press).

  11. Klyamkin, S.N., Tarasov, B.P., and Straz, E.L., Mechanochemical Synthesis and Properties of Hydrogen Sorbents in the Magnesium Hydride-Graphite System, Proc. VIII Int. Conf. on Hydrogen Materials Science and Chemistry of Carbon Nanomaterials (ICHMS 2003), Sudak, 2003, pp. 20–21.

  12. Klyamkin, S.N., Tarasov, B.P., Straz, E.L., et al., Ball Milling Synthesis and Properties of Hydrogen Sorbents in the Magnesium Hydride-Graphite System, Int. J. Altern. En. Ecol., 2005, no. 1, pp. 27–29.

  13. Shang, C.X. and Guo, Z.X., Effect of Carbon on Hydrogen Desorption and Absorption of Mechanically Milled MgH2, J. Power Sources, 2004, vol. 129, pp. 73–80.

    Article  CAS  Google Scholar 

  14. Chen, D., Chen, L., Liu, S., et al., Microstructure and Hydrogen Storage Property of Mg/MWNTs Composites, J. Alloys Compd., 2004, vol. 372, pp. 231–237.

    Article  CAS  Google Scholar 

  15. Volodin, A.A., Fursikov, P.V., and Tarasov, B.P., Synthesis of Carbon Nanostructures through C2H4 Pyrolysis on LaNi5 Powder, Int. J. Altern. En. Ecol., 2002, no. 6, pp. 34–37.

  16. Klyamkin, S.N., Burnasheva, V.V., and Semenenko, K.N., Low-Temperature High-Pressure Phase Relations in the Hf2Fe-H2 System, Izv. Akad. Nauk, Ser. Khim., 1997, no. 1, pp. 33–36.

  17. Streletskii, A.N., Measurement and Calculations of Main Parameters of Powder Mechanical Treatment in Different Mills, Proc. II Int. Conf. on Structural Applications of Mechanical Alloying, Vancouver, 1993, pp. 51–58.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © R.V. Lukashev, S.N. Klyamkin, B.P. Tarasov, 2006, published in Neorganicheskie Materialy, 2006, Vol. 42, No. 7, pp. 803–810.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukashev, R.V., Klyamkin, S.N. & Tarasov, B.P. Preparation and properties of hydrogen-storage composites in the MgH2-C system. Inorg Mater 42, 726–732 (2006). https://doi.org/10.1134/S0020168506070077

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168506070077

Keywords

Navigation