Skip to main content
Log in

On the Vapor Film Destabilization Mechanism during Unsteady Film Boiling

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

We present new experimental data on the cooling of nickel and duralumin spheres in subcooled water and ethanol, along with a review of our comprehensive experimental investigations from 2015 to 2022. The hypothesis on the vapor film destabilization mechanism during unsteady cooling of high-temperature bodies is elucidated. Additionally, new correlations are proposed for estimating the temperature head at the cessation of film boiling in both saturated and subcooled liquids. The derived equations are validated against an extensive body of proprietary experimental data as well as data from other researchers, exhibiting strong qualitative and quantitative agreement with experimental outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Melikhov, V.I., Melikhov, O.I., and Yakush, S.E., High Temp., 2022, vol. 60, no. 2, p. 252.

    Article  CAS  Google Scholar 

  2. Zeigarnik, Yu.A., Ivochkin, Yu.P., Kubrikov, K.G., and Teplyakov, I.O., Vopr. At. Nauki Tekh., Ser.: Yad. Konstanty, 2018, no. 5, p. 63.

  3. Zvirin, Y., Hewitt, G.R., and Kenning, D.B.R., Exp. Heat Transfer, 1990, vol. 3, no. 3, p. 185.

    Article  ADS  CAS  Google Scholar 

  4. Hsu, S.-H., Ho, Y.-H., Wang, J.-C., and Pan, C., Int. J. Heat Mass Transfer, 2015, vol. 86, p. 65.

    Article  CAS  Google Scholar 

  5. Specht, E., Heat and Mass Transfer in Thermoprocessing: Fundamentals, Calculations, Processes, Essen: Vulkan, 2017.

    Google Scholar 

  6. Kim, A.K. and Lee, Y., Lett. Heat Mass Transfer, 1979, vol. 6, no. 2, p. 117.

    CAS  Google Scholar 

  7. Shigefumi, N., Int. J. Heat Mass Transfer, 1987, vol. 30, no. 10, p. 2045.

    Article  Google Scholar 

  8. Berenson, P.J., Int. J. Heat Mass Transfer, 1961, vol. 83, no. 3, p. 351.

    CAS  Google Scholar 

  9. Henry, R.E., AIChE Symp. Series, 1974, vol. 70, no. 138, p. 81.

  10. Segev, A. and Bankoff, S.G., Int. J. Heat Mass Transfer, 1980, vol. 23, no. 5, p. 637.

    Article  ADS  Google Scholar 

  11. Olek, S., Zvirin, Y., and Elias, S., Int. J. Heat Mass Transfer, 1988, vol. 31, no. 4, p. 898.

    Article  CAS  Google Scholar 

  12. Bernardin, J.D. and Mudawar, I., J. Heat Transfer, 1999, vol. 121, no. 4, p. 894.

    Article  Google Scholar 

  13. Zavbirov, A.R., Yagov, V.V., Ryazantsev, V.A., Molotova, I.A., and Vinogradov, M.M., J. Phys.: Conf. Ser., 2021, vol. 2116, no. 1, p. 012010.

    Google Scholar 

  14. Yagov, V.V., Zabirov, A.R., Kanin, P.K., and Denisov, M.A., J. Eng. Phys. Thermophys., 2017, vol. 90, no. 2, p. 266.

    Article  CAS  Google Scholar 

  15. Molotova, I., Zabirov, A., Yagov, V., Vinogradov, M., Kanin, P., Molotov, I., and Antonov, N., Int. J. Therm. Sci., 2022, vol. 179, p. 107659.

    Article  CAS  Google Scholar 

  16. Dedov, A.V., Zabirov, A.R., Sliva, A.P., Fedorovich, S.D., and Yagov, V.V., High Temp., 2019, vol. 57, no. 1, p. 63.

    Article  CAS  Google Scholar 

  17. Kang, J.-Y., Kim, T.K., Lee, G.C., Kim, M.H., and Park, H.S., Ann. Nucl. Energy, 2018, vol. 112, p. 794.

    Article  CAS  Google Scholar 

  18. Wang, Z., Zhong, M., DEng., J., Liu, Y., Huang, H., Zhang, Y., and Xiong, J., Ann. Nucl. Energy, 2021, vol. 150, p. 107842.

    Article  CAS  Google Scholar 

  19. Terrani, K.A., J. Nucl. Mater., 2018, vol. 501, p. 13.

    Article  ADS  CAS  Google Scholar 

  20. Yagov, V.V., Zabirov, A.R., and Kanin, P.K., Int. J. Heat Mass Transfer, 2018, vol. 126.

  21. Zhilin, V.G., Zeigarnik, Yu.A., Ivochkin, Yu.P., Oksman, A.A., and Belov, K.I., High Temp., 2009, vol. 47, no. 6, p. 856.

    Article  CAS  Google Scholar 

  22. Yagov, V.V., Int. J. Heat Mass Transfer, 2009, vol. 52, nos 21-22, p. 5241.

    Article  CAS  Google Scholar 

  23. Kapitsa, P.L., Zh. Eksp. Teor. Fiz., 1948, vol. 18, no. 1, p. 3.

    ADS  Google Scholar 

  24. Sinkevich, O.A., High Temp., 2021, vol. 59, no. 1, p. 77.

  25. Yagov, V.V., Leksin, M.A., Zabirov, A.R., and Denisov, M.A. Int. J. Heat Mass Transfer, 2016, vol. 100, p. 918.

    Article  Google Scholar 

  26. Witte, L.C. and Lienhard, J.H., Int. J. Heat Mass Transfer, 1982, vol. 25, 771.

  27. Takeuchi, H., Ohtake, H., Ueno, M., Washida, H., and Hasegawa, K., Proc. 24th Int. Conf. on Nuclear Engineering, 2016, vol. 5, p. V005T15A046.

  28. Kikuchi, Y., Takeshi, E., and Itaru, M., Int. J. Heat Mass Transfer, 1992, vol. 35, no. 6, p. 1589.

    Article  CAS  Google Scholar 

  29. Yeom, H., Jo, H., Johnson, G., Sridharan, K., and Corradini, M., Int. J. Heat Mass Transfer, 2018, vol. 120, p. 435.

    Article  CAS  Google Scholar 

  30. Jo, H.J., Yeom, H., Yoon, D.S., Duarte, J.P., and Corradini, M.L., Int. J. Heat Mass Transfer, 2018, vol. 127, p. 414.

    Article  CAS  Google Scholar 

  31. Bradfield, W.S., Ind. Eng. Chem. Fundam., 1966, vol. 5, no. 2, p. 200.

    Article  CAS  Google Scholar 

  32. Baumeister, K.J., Henry, R.E., and Simon, F.F., Proc. Spec. Session on Augmentation of Convective Heat and Mass Transfer of the Am. Soc. of Mech. Eng., Winter Ann. Meeting, 1970.

  33. Hurley, P. and Duarte, J.P., Appl. Therm. Eng., 2021, vol. 195, p. 117257.

    Article  Google Scholar 

  34. Eustathopoulos, N., Nicholas, M.G., and Drevet, B., in Wettability at High Temperatures, Cahn, R.W., Ed., Kidlington: Elsevier, 1999, p. 439.

    Google Scholar 

  35. Fan, L.W., Li, J.Q., Su, Y.Y., Wang, H.L., Ji, T., and Yu, Z.T., J. Heat Transfer, 2016, vol. 138, no. 2, p. 021503.

    Article  Google Scholar 

  36. Kang, J.-Y., Lee, G.C., Kim, M.H., Moriyama, K., and Park, H.S., Int. J. Heat Mass Transfer, 2018, vol. 117, p. 538.

    Article  CAS  Google Scholar 

  37. Pavlenko, A.N., Tsoi, A.N., Surtaev, A.S., Kuznetsov, D.V., and Serdyukov, V.S., High Temp., 2016, vol. 54, no. 3, p. 370.

    Article  CAS  Google Scholar 

  38. Molotova, I.A., Zabirov, A.R., Yagov, V.V., Terentyev, E.V., Antonov, N.N., Molotov, I.M., Tumarkin, A.V., and Kharkov, M.M., J. Phys.: Conf. Ser., 2021, vol. 2039, no. 1, p. 012024.

    Google Scholar 

  39. Yagov, V.V., Minko, K.B., and Zabirov, A.R., Int. J. Heat Mass Transfer, 2021, vol. 167, p. 120838.

    Article  CAS  Google Scholar 

  40. Ebrahim, S.A., Chang, S., Cheung, F.B., and Bajorek, S.M., Appl. Therm. Eng., 2018, vol. 140, p. 139.

    Article  CAS  Google Scholar 

  41. Freud, R., Harari, R., and Sher, E., Nucl. Eng. Des., 2009, vol. 239, no. 4, p. 722.

    Article  CAS  Google Scholar 

  42. Jouhara, H. and Axcell, B.P., Nucl. Eng. Des., 2009, vol. 239, no. 10, p. 1885.

    Article  CAS  Google Scholar 

Download references

Funding

The reported study was funded by RFBR according to the research project no. 20-38-90142 and supported by the Ministry of Science and Higher Education of the Russian Federation under state task no. FSWF-2023-0017 (agreement no. 075-03-2023-383 of January 18, 2023) in the field of scientific activity for 2023‒2025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Kanin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by O. Zhukova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanin, P.K., Yagov, V.V., Zabirov, A.R. et al. On the Vapor Film Destabilization Mechanism during Unsteady Film Boiling. High Temp 61, 220–228 (2023). https://doi.org/10.1134/S0018151X23020086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X23020086

Navigation