Skip to main content
Log in

Combustion of Hydrogen–Air Mixtures in a Tube with Annular Ignition

  • SHORT COMMUNICATIONS
  • Published:
High Temperature Aims and scope

Abstract

The combustion dynamics for hydrogen–air mixtures with a hydrogen content of 15 and 20 vol % in tubes with an annular cross section and central and annular ignition was studied experimentally. In studying annular ignition, the width of the ring gap was varied. The dynamics and structure of the flame front were determined by shadow imaging and high-speed video recording. The optimal value of the size of the ring gap, which provides the maximum velocity of the flame front at the initial stage of propagation, was established. The slowing of the flame before transition to a quasi-plane front was also obtained. The results can be used in developing advanced power plants using both combustion and detonation of hydrogen–air mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Chien, F., Kamran, H.W., Albashar, G., and Iqbal, W., Int. J. Hydrogen Energy, 2021, vol. 46, p. 7745.

    Article  Google Scholar 

  2. Action Plan on the Development of Hydrogen Energy in the Russian Federation until 2024, 2020. http://government.ru/docs/40703.

  3. Schastlivtsev, A.I., Dunikov, D.O., Borzenko, V.I., and Shmatov, D.P., High Temp., 2020, vol. 58, no. 5, p. 733.

    Article  Google Scholar 

  4. Zabaikin, V.A., High Temp., 2017, vol. 55, no. 4, p. 567.

    Article  Google Scholar 

  5. Aminov, R.Z. and Egorov, A.N., High Temp., 2018, vol. 56, no. 5, p. 744.

    Article  Google Scholar 

  6. Aminov, R.Z., Schastlivtsev, A.I., and Bayramov, A.N., High Temp., 2020, vol. 58, no. 3, p. 410.

    Article  Google Scholar 

  7. Kiverin, A.D. and Smygalina, A.E., High Temp., 2022, vol. 60, no. 1, p. 94.

    Article  Google Scholar 

  8. Zaichenko, V.M., Kiverin, A.D., Smygalina, A.E., and Tsyplakov, A.I., Izv. Ross. Akad. Nauk, Energ., 2018, no. 4, p. 87.

  9. Kavtaradze, R.Z., Zelentsov, A.A., and Krasnov, V.M., High Temp., 2018, vol. 56, no. 6, p. 900.

    Article  Google Scholar 

  10. Szwaja, S., Int. J. Hydrogen Energy, 2019, vol. 44, p. 19017.

    Article  Google Scholar 

  11. Benajes, J., Novella, R., Gomez-Soriano, J., Martinez-Hernandiz, P.J., Libert, C., and Dabiri, M., Appl. Energy, 2019, vol. 248, p. 576.

    Article  Google Scholar 

  12. Verhelst, S. and Wallner, T., Prog. Energy Combust. Sci., 2009, vol. 35, p. 490.

    Article  Google Scholar 

  13. Zel’dovich, Ya.B., Librovich, V.B., Makhviladze, G.M., and Sivashinskii, G.I., J. Appl. Mech. Tech. Phys., 1970, vol. 11, no. 2, p. 264.

    Article  ADS  Google Scholar 

  14. Salamandra, G.D., Bazhenova, T.B., and Naboko, I.M., Zh. Tekh. Fiz., 1959, vol. 29, no. 11, no. 1354.

  15. Demir, S., Bychkov, V., Chalagalla, S.H.R., and Akkerman, V., Combust. Theory Modell., 2017, vol. 21, p. 997.

    Article  ADS  Google Scholar 

  16. Ditsent V. and Shchelkin, K.I., Zh. Fiz. Khim., 1945, vol. 19, nos. 4–5, p. 100.

    Google Scholar 

  17. Frolov, S.M., Aksenov, V.S., and Shamshin, I.O., Russ. J. Phys. Chem B, 2008, vol. 2, no. 10, p. 759.

    Article  Google Scholar 

  18. Golovastov, S.V., Mikushkin, A.Yu., and Golub, V.V., Tech. Phys., 2017, vol. 62, no. 10, p. 1496.

    Article  Google Scholar 

  19. Elyanov, A., Golub, V., and Volodin, V., Int. J. Hydrogen Energy, 2022, vol. 47, p. 22602.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Golub.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, V.V., Golub, V.V. & El’yanova, A. Combustion of Hydrogen–Air Mixtures in a Tube with Annular Ignition. High Temp 60, 888–891 (2022). https://doi.org/10.1134/S0018151X22050157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22050157

Navigation