Skip to main content
Log in

Kinetics and Model of Metal Vapor Lasers Excited by an Inductive Pulsed-Periodic High-Freaquency Discharge

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The article presents a physical model of the processes occurring in a nonequilibrium plasma of the working body of metal vapor lasers excited by an inductive pulsed-periodic high-freaquency discharge. The model is based on differential equations of population kinetics, electron energy balance, electric circuit, development of stimulated emission, etc. All equations are adapted to the features of induction discharge and the special geometry of the discharge chamber. A description of the model is presented for a variant of a copper vapor laser with a neon buffer gas. Peculiarities of the dynamics of the parameters of plasma and laser radiation under high-freaquency discharge conditions are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Isaev, A.A. and Petrash, G.G., in Impul’snye gazorazryadnye lazery na perekhodakh atomov i molekul (Pulsed Gas-Discharge Lasers Based on Transitions of Atoms and Molecules), Tr. FIAN, vol. 81, Moscow: Nauka, 1975.

  2. Little, C.E., Metal Vapor Lasers: Physics, Engineering and Applications, Chichester: Wiley, 1999.

    Google Scholar 

  3. Batenin, V.M., Buchanov, V.V., Boichenko, A.M., Kazaryan, M.I., Klimovskii, I.I., and Molodykh, E.I., High Brightness Metal Vapor Lasers, vol. 1: Physical Fundamentals and Mathematical Models, Boca Raton: CRC, 2016.

    MATH  Google Scholar 

  4. Batenin, V.M., Bokhan, P.A., Buchanov, V.V., Evtushenko, G.S., Kazaryan, M.A., Karpukhin, V.T., Klimovskii, I.I., and Malikov, M.M., Lazery na samoogranichennykh perekhodakh atomov metallov (Lasers Based on Self-Terminating Transitions of Metal Atoms), Batenin, V.M., Ed., Moscow: Fizmatlit, 2011, vol. 2.

    Google Scholar 

  5. Malikov, M.M., Kazaryan, M.A., and Karpukhin, V.T., Kratk. Soobshch. Fiz., 2015, vol. 42, no. 5, no. 28.

  6. Batenin, V.M., Kazaryan, M.A., Karpukhin, V.T., Lyabin, N.A., and Malikov, M.M., Plasma Phys. Rep., 2016, vol. 42, no. 11, p. 1057.

    Article  ADS  Google Scholar 

  7. Batenin, V.M., Kazaryan, M.A., Karpukhin, V.T., and Malikov, M.M., High Temp., 2017, vol. 55, no. 5, p. 678.

    Article  Google Scholar 

  8. Grigor’yants, A.G., Kazaryan, M.A., and Lyabin, V.N., Lazernaya pretsizionnaya mikroobrabotka materialov (Laser Precision Micromachining of Materials), Moscow: Fizmatlit, 2017.

  9. Evtushenko, G.S., Kazaryan, M.A., Torgaev, S.N., Trigub, M.V., and Shiyanov, D.V., Skorostnye usiliteli yarkosti na indutsirovannykh perekhodakh v parakh metallov (High-Speed Brightness Amplifiers Based on Induced Transitions in Metal Vapors), Tomsk: STT, 2016.

  10. Varaksin, A.Yu., Romash, M.E., and Kopeitsev, V.N., High Temp., 2010, vol. 48, no. 4, no. 588.

  11. Ustanovki induktsionnogo nagreva (Induction Heating Plants), Slukhotskii, A.E., Ed., Leningrad; Energoatomizdat, 1981.

    Google Scholar 

  12. Direktor, L.B. and Malikov, M.M., Preprint of the Inst. High Temp. Acad. Sci. USSR, Moscow, 1988, no. 5-249.

  13. Biberman, L.M., Vorob’ev, V.S., and Yakubov, I.T., Kinetika neravnovesnoi nizkotemperaturnoi plazmy (Kinetics of Nonequilibrium Low-Temperature Plasma), Moscow: Nauka, 1982.

  14. Biberman, L.M., Dokl. Akad. Nauk SSSR, 1948, vol. 59, no. 4, p. 659.

    Google Scholar 

  15. Hasted, J.B., Physics of Atomic Collisions, Washington, D.C.: Butterworth, 1964.

    Google Scholar 

  16. Golant, V.E., Zhilinskii, A.P., and Sakharov, S.A., Osnovy fiziki plazmy (Fundamentals of Plasma Physics), Moscow: Atomizdat, 1977.

  17. Direktor, L.B., Malikov, M.M., and Fomin, V.A., Zh. Tekh. Fiz., 1987, vol. 57, no. 1, no. 28.

  18. Koshinar M., Kryukov, N.A., and Red’ko, T.P., Opt. Spektrosk., 1981, vol. 50, no. 1, no. 62.

  19. Frank-Kamenetskii, D.A., Lektsii po fiziki plazmy (Lectures on Plasma Physics), Moscow: Atomizdat, 1964.

  20. Gudzenko, L.I. and Yakovlenko, S.I., Plazmennye lazery (Plasma Lasers), Moscow: Atomizdat, 1978.

  21. Zhilinskii, A.P., Liventseva, I.F., and Tsendin, L.D., Zh. Tekh. Fiz., 1977, vol. 47, no. 2, p. 304.

    Google Scholar 

  22. Scheibner, K.F., Hazi, A.U., and Henry, R.J.W., Phys. Rev. A, 1987, vol. 35, no. 11, p. 4869.

    Article  ADS  Google Scholar 

  23. Baille, P., Chang, J.-S., Claude, A., Hobson, R.M., Ogram, G.L., and Yau, A.W., J. Phys. B, 1981, vol. 14, p. 1485.

    Article  ADS  Google Scholar 

  24. Braginskii, S.I., Voprosy teorii plazmy (Questions of Plasma Theory), Leontovich, M.A., Ed., Moscow; Gosatomizdat, 1963, vol. 1.

    Google Scholar 

  25. Metody rascheta opticheskikh kvantovykh generatorov (Methods for Calculating Optical Quantum Generators), Stepanov, B.I., Ed., Moscow: Nauka Tekh., 1968, vol. 2, p. 184.

    Google Scholar 

  26. Zhidkov, A.G., Protopopov, S.V., Sereda, O.V., Terskikh, A.O., and Yakovlenko, S.I., Tr. FIAN, 1989, vol. 21, no. 116.

  27. Isaev, A.A., Sov. J. Quantum Electron., 1980, vol. 10, no. 3, p. 336.

    Article  ADS  Google Scholar 

  28. Batenin, V.M., Klimovskii, I.I., Morozov, A.V., and Selezneva, L.A., Teplofiz. Vys. Temp., 1979, vol. 17, no. 3, no. 483.

  29. Kalantarov, P.L. and Tseitlin, L.A., Raschet induktivnostei (Calculation of Inductances), Leningrad: Energiya, 1970.

  30. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Moscow: Intellekt, 2009, 3rd ed.

  31. Tamm, I.E., Osnovy teorii elektrichestva (Fundamentals of the Theory of Electricity), Moscow: Nauka; Gl. Red. Fiz.-Mat. Lit., 1976.

  32. Popov, V.P., Osnovy teorii tsepei (Fundamentals of the Circuit Theory), Moscow: Vysshaya Shkola, 2007.

  33. Dresvin, S.V., Osnovy teorii i rascheta vysokochastotnykh plazmotronov (Fundamentals of the Theory and Calculation of High-Frequency Plasmatrons), Leningrad: Energoatomizdat, 1991.

  34. Direktor, L.B., Karpukhin, M.T., and Malikov, M.M., High Temp., 2014, vol. 52, no. 3, p. 428.

    Article  Google Scholar 

  35. Batenin, V.M., Karpukhin, V.T., Malikov, M.M., Mendeleev, V.Ya., Kazaryan, M.A., Zakharyan, R.A., and Lyabin, N.A., Kratk. Soobshch. Fiz., 2018, vol. 45, no. 6, p. 11.

    Google Scholar 

  36. Batenin, V.M., Kazaryan, M.A., Karpukhin, V.T., and Malikov, M.M., Laser Phys., 2019, vol. 29, no. 8, p. 5002.

    Article  Google Scholar 

  37. Direktor, L.B. and Malikov, M.M., Teplofiz. Vys. Temp., 1989, vol. 27, no. 5, p. 1036.

    Google Scholar 

  38. D’yachkov, L.G. and Kobzev, G.A., Zh. Tekh. Fiz., 1978, vol. 48, no. 11, p. 2343.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to V.M. Batenin for support and participation in studies on this topic, as well as for useful discussion of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Malikov.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malikov, M.M. Kinetics and Model of Metal Vapor Lasers Excited by an Inductive Pulsed-Periodic High-Freaquency Discharge. High Temp 60, 587–598 (2022). https://doi.org/10.1134/S0018151X22050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22050091

Navigation