Skip to main content
Log in

Thermodynamic Properties of Cerium Dioxide in the Condensed State

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

As part of the further development of the IVTANTERMO information and reference system, the entire set of experimental data on the thermodynamic properties of cerium dioxide available in the literature was critically analyzed and processed. An equation was obtained that approximates the temperature dependence of the heat capacity of crystalline CeO2 in the interval 298.15–3083 K. There are no experimental data for liquid cerium dioxide in the literature. The missing thermodynamic quantities (enthalpy of melting, heat capacity of the liquid phase) are obtained by estimation. Particular attention is paid to the transition between the oxidized and reduced forms of cerium Ce4+ ⇄ Ce3+, as a result of which in the CeO2–CeO1.5 system, a number of intermediate oxides are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Leonov, A.I., Vysokotemperaturnaya khimiya kislorodnykh soedinenii tseriya (High-Temperature Chemistry of Oxygen Compounds of Cerium), Leningrad: Nauka, 1970.

  2. Rao, G.R. and Mishra, B.G., Bull. Catal. Soc. India, 2003, vol. 2, p. 122.

    Google Scholar 

  3. Ivanova, A.I., Kinet. Catal., 2009, vol. 50, no. 6, p. 797.

    Article  Google Scholar 

  4. Malyutin, A.V., Cand. Sci. (Chem.) Dissertation, Moscow: Mendeleev Univ. Chem. Technol., 2014.

  5. Sal’nikov, V.V. and Pikalova, E.Yu., Phys. Solid State, 2015, vol. 57, no. 10, p. 1944.

    Article  ADS  Google Scholar 

  6. Kuznetsova, S.A., Khalipova, O.S., Kozik, V.V., Plenki na osnove dioksida tseriya: poluchenie, svoistva, primenenie (Films Based on Cerium Dioxide: Production, Properties, Applications), Tomsk: Tomsk. Gos. Univ., 2016.

  7. Kim, H.S., Joung, C.Y., Lee, B.H., Oh, J.Y., Koo, Y.H., and Heimgartner, P., J. Nucl. Mater., 2008, vol. 378, p. 98.

    Article  ADS  Google Scholar 

  8. Bevan, D.J.M., J. Inorg. Nucl. Chem., 1955, vol. 1, nos. 1–2, p. 49.

    Article  Google Scholar 

  9. Ricken, M., Nolting, J., and Riess, I., J. Solid State Chem., 1984, vol. 54, no. 1, p. 89.

    Article  ADS  Google Scholar 

  10. Korner, R., Ricken, M., Nolting, J., and Riess, I., J. Solid State Chem., 1989, vol. 78, p. 136.

    Article  ADS  Google Scholar 

  11. Zinkevich, M., Djurovic, D., and Aldinger, F., Solid State Ionics, 2006, vol. 177, p. 989.

    Article  Google Scholar 

  12. Okamoto, H., J. Phase Equilib. Diffus., 2008, vol. 29, no. 6, p. 545.

    Article  Google Scholar 

  13. Aristova, N.M., Belov, G.V., Russ. J. Phys. Chem. A, 2014, vol. 88, no. 9, p. 1445.

    Article  Google Scholar 

  14. Westrum, E.F. and Beale, A.F., J. Phys. Chem., 1961, vol. 65, p. 353.

    Article  Google Scholar 

  15. Morrison, T.D., Wood, E.S., Week, P.F., Kim, E., Sung, OhWoo., Nelson, A.T., and Naugle, D.C., J. Chem. Phys., 2019, vol. 151, p. 044202.

    Article  ADS  Google Scholar 

  16. Kuznetsov, F.A. and Rezukhina, T.N., Zh. Fiz. Khim., 1960, vol. 34, no. 11, p. 2465.

    Google Scholar 

  17. King, E.G. and Christensen, A.U., High-temperature heat contents and entropies of cerium dioxide and niobium dioxide, US Bureau Mines. RI no. 5789, Washington, 1961.

  18. Pears, C.D., Oglesby, S., Allen, J.G., Neel, D.S., Mann, W.H., Rhodes, P.H., Osment, D., Barrett, W.J., Holder, S.G., and Honeycutt, J.O., Tech. Rep. AASD-TDR-62-765, Birmingham: South. Res. Inst., 1963.

  19. Mezaki, R., Tilleux, E.W., Jambois, T.F., and Margrave, J.Z., Proc. 3rd ASME Symposium on Advanced Thermophysical Property of Extreme Temperature, Lafayette, Indiana, 1965, p. 138.

  20. Yashvili, T.S., Tsagareishvili, D.Sh., and Gvelesiani, G.G., Soobshch. Akad. Nauk Gruz. SSR, 1976, vol. 46, no. 2, p. 409.

    Google Scholar 

  21. Riess, I., Ricken, M., and Nolting, J., J. Solid State Chem., 1985, vol. 57, p. 314.

    Article  ADS  Google Scholar 

  22. Gallagher, S.A. and Dworzak, W.R., J. Am. Ceram. Soc., 1985, vol. 68, p. 206.

    Article  Google Scholar 

  23. Krishnan, R.V. and Nagarajan, K., Thermochim. Acta, 2006, vol. 440, p. 141.

    Article  Google Scholar 

  24. Nelson, A.T., Rittman, D.R., White, J.T., Dunwoody, J.T., Kato, M., and McClellan, K.J., J. Am. Ceram. Soc., 2014, vol. 97, no. 11, p. 3652.

    Article  Google Scholar 

  25. Hein, R.A. and Flagella, P.N., Enthalpy measurements of uranium dioxide and tungsten to 3260 K, General Electric (USA), Nuclear Materials and Propulsion Oper. GEMP-578, 1968, p. 21.

    Google Scholar 

  26. Leibowitz, L., Chasanov, M.G., Mishler, L.W., and Fischer, D.F., J. Nucl. Mater., 1971, vol. 39, p. 115.

    Article  ADS  Google Scholar 

  27. Ruff, O., Z. Anorg. Chem., 1913, vol. 82, p. 373.

    Article  Google Scholar 

  28. Von Wartenberg, H. and Gurr, W., Z. Anorg. Allg. Chem., 1931, vol. 196, p. 374.

    Article  Google Scholar 

  29. Mordovin, O.A., Timofeeva, N.I., and Drozdova, L.N., Izv. Akad. Nauk SSSR. Neorg. Mater., 1967, vol. 3, no. 1, p. 187.

    Google Scholar 

  30. Berezhnoi, A.S., Sbornik nauchnykh trudov Ukrainskogo nauchno-issledovatel’skogo instituta ogneuporov (Collection of Scientific Papers of the Ukrainian Research Institute of Refractories), Moscow: Metallurgiya, 1963.

  31. Wicks, C.E. and Block, F.E., Thermodynamic Properties of 65 Elements: Their Oxides, Halides, Carbides, and Nitrides, Washington: Bureau Mines, 1963.

    Google Scholar 

  32. Brewer, L., Chem. Rev., 1953, vol. 52, p. 1.

    Article  Google Scholar 

  33. Glassner, A., Thermochemical properties of the oxides, fluorides and chlorides to 2500 K, Natl. Lab. report no. ANL-5750, Argonne, 1957.

  34. Elliot, R.P., Constitution of Binary Alloys, New York: McGraw-Hill, 1965.

    Google Scholar 

  35. Cherepanov, A.M. and Tresvyatskii, S.G., Vysokoogneupornye materialy i izdeliya iz okislov (Highly Refractory Materials and Oxide Products), Moscow: Metallurgiya, 1964.

  36. Ryschkewitch, E., Oxide Ceramics from the Point of View of Single-Material Systems of Physical Chemistry, Berlin, 1948.

    Google Scholar 

  37. Green, A.T. and Stewart, G.H., Ceramics: A Symposium, London: British Ceramic Society, 1953.

  38. Nakamura, T., Ceramics and Heating, Tokyo: Gihodo, 1985.

    Google Scholar 

  39. Du, Y., Yashima, M., Koura, T., Kakihana, M., and Yoshimura, M., Scr. Metall. Mater., 1994, vol. 31, p. 327.

    Article  Google Scholar 

  40. Konings, R.J.M., Benes, O., Kovacs, A., Manara, D., Sedmidubsky, D., Gorokhov, L., Iorish, V., Yungman, V., Shenyavskaya, E., and Osina, E., J. Phys. Chem. Ref. Data, 2014, vol. 43, 013101.

    Article  ADS  Google Scholar 

  41. Aristova, N.M., Belov, G.V., Morozov, I.V., and Sineva, M.A., High Temp., 2018, vol. 56, no. 5, p. 652.

    Article  Google Scholar 

  42. Huber, E.J. and Holley, C.E., J. Am. Chem. Soc., 1953, vol. 75, no. 22, p. 5645.

    Article  Google Scholar 

  43. Schumm, R.H., Wagman, D.D., Bailey, S., Evans, W.H., and Parker, V.B., Selected values of chemical thermodynamic properties: Tables for the lanthanide (rare earth) elements (Elements 62 through 76 in the standard order of arrangement), NBS Tech. Note 270-7, 1973.

  44. Baker, F.B., Huber, E.J., Holley, C.E., and Krikorian, N.H., J. Chem. Thermodyn., 1971, vol. 3, no. 1, p. 77.

    Article  Google Scholar 

Download references

Funding

The study was carried out under an agreement between the Joint Institute for High Temperatures of the Russian Academy of Sciences and TRINITI JSC of July 31, 2020, no. 17706413348200001160/226/2872-D “Creation of Wide-Range Models and Development of Computer Codes to Obtain New Data on Mechanical, Thermodynamic, Structural Properties, as Well as Atomic Structures of Multielectron Ions for Various Nuclear Energy Materials at High Energy Concentrations”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Aristova.

Ethics declarations

The author declare that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aristova, N.M. Thermodynamic Properties of Cerium Dioxide in the Condensed State. High Temp 60, 756–760 (2022). https://doi.org/10.1134/S0018151X22040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22040095

Navigation