Skip to main content
Log in

Study of Versions of Thermodynamic Perturbation Theory for Simulation of the Properties of Binary Mixtures of Fluids in Wide Ranges of Pressures and Temperatures

  • THERMOPHYSICAL PROPERTIES OF MATERIALS
  • Published:
High Temperature Aims and scope

Abstract

The article considers the main provisions of three versions of perturbation theory: BH (D. Henderson and J.A. Barker), WCA (J.D. Weeks, D. Chandler, and H.C. Andersen), and KLRR (H.S. Kang, C.S. Lee, T. Ree, and F.H. Ree) used to calculate the thermodynamic properties of binary mixtures of dense gases in a wide range of pressures and temperatures. The interaction of molecules is described using the spherically symmetric pair potential exp-6. Verification was carried out by comparing experimental data on the compression of binary helium–hydrogen and ammonia–hydrogen mixtures, as well as on shock-wave compression of liquid N2, O2 with the results of equilibrium thermodynamic calculations and Monte Carlo simulations. It is shown that for thermodynamic simulation of the properties of binary mixtures, the most accurate version of perturbation theory is the modernized KLRR-T theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Son, E.E., High Temp., 2013, vol. 51, no. 3, p. 351.

    Article  Google Scholar 

  2. Sumskoi, S.I., Sofyin, A.S., Agapov, A.A., and Zainetdinov, S.Kh., J. Phys.: Conf. Ser., 2020, vol. 1686, 012085.

    Google Scholar 

  3. Shargatov, V.A., J. Phys.: Conf. Ser., 2016, vol. 774, 012078.

    Google Scholar 

  4. Bryakina, U.F., Gubina, T.V., Shargatov, V.A., Russ. J. Phys. Chem. B, 2011, vol. 5, p. 482.

    Article  Google Scholar 

  5. Wilhelmsen, O., Aasen, A., Skaugen, G., et al., Ind. Eng. Chem. Res., 2017, vol. 56, no. 13, p. 3503.

    Article  Google Scholar 

  6. Zelener, B.V., Norman, G.E., and Filinov, V.S., Teoriya vozmushchenii i psevdopotentsial v statisticheskoi termodinamike (Perturbation Theory and Pseudopotential in Statistical Thermodynamics), Moscow: Nauka, 1981.

  7. Zelener, B.V., Norman, G.E., and Filinov, V.S., Teplofiz. Vys. Temp., 1976, vol. 14, no. 3, p. 469.

    Google Scholar 

  8. Neruchev, Yu.A. and Bolotnikov, M.F., High Temp., 2020, vol. 58, no. 3, p. 444.

    Article  Google Scholar 

  9. Ross, M., J. Chem. Phys., 1980, vol. 73, no. 9, p. 4445.

    Article  ADS  Google Scholar 

  10. Ross, M., J. Chem. Phys., 1979, vol. 71, no. 4, p. 1567.

    Article  ADS  Google Scholar 

  11. Kang, H.S., Lee, C.S., Ree, T., and Ree, F.H., J. Chem. Phys., 1985, vol. 82, no. 1, p. 414.

    Article  ADS  Google Scholar 

  12. Henderson, D. and Barker, J.A., J. Chem. Phys., 1967, vol. 47, no. 11, p. 4714.

    Article  ADS  Google Scholar 

  13. Weeks, J.D., Chandler, D., and Andersen, H.C., J. Chem. Phys., 1971, vol. 54, p. 5237.

    Article  ADS  Google Scholar 

  14. Zerah, G. and Hansen, J.-P., J. Chem. Phys., 1986, vol. 84, no. 4, p. 2336.

    Article  ADS  Google Scholar 

  15. Bogdanova, Yu.A., Gubin, S.A., Viktorov, S.B., and Gubina, T.V., High Temp., 2015, vol. 53, no. 4, p. 481.

    Article  Google Scholar 

  16. Mansoori, G.A., Carnahan, N.F., Starling, K.E., and Leland, T.W., J. Chem. Phys., 1971, vol. 54, p. 1523.

    Article  ADS  Google Scholar 

  17. Bogdanova, Yu.A., Gubin, S.A., and Maklashova, I.V., Phys. At. Nucl., 2019, vol. 82, p. 1481.

    Article  Google Scholar 

  18. Verlet, L. and Weis, J.-J., Phys. Rev. A, 1972, vol. 5, no. 2, p. 939.

    Article  ADS  Google Scholar 

  19. Lebowitz, J.L., Phys. Rev., 1964, vol. 133, p. A895.

    Article  ADS  Google Scholar 

  20. Leonard, P.J., Henderson, D., and Barker, J.A., Trans. Faraday Soc., 1970, vol. 66, p. 2439.

    Article  Google Scholar 

  21. Rogers, B.L. and Prausnitz, J.M., Trans. Faraday Soc., 1971, vol. 67, p. 3474.

    Article  Google Scholar 

  22. Weeks, J.D., Chandler, D., and Andersen, H.C., Phys. Rev. A, 1971, vol. 4, no. 4, p. 1597.

    Article  ADS  Google Scholar 

  23. Weeks, J.D., Chandler, D., and Andersen, H.C., J. Chem. Phys., 1971, vol. 55, no. 11, p. 5422.

    Article  ADS  Google Scholar 

  24. Dubinin, N.E., Yuryev, A.A., and Vatolin, N.A., Thermochim. Acta, 2011, vol. 518, nos. 1–2, p. 9.

    Article  Google Scholar 

  25. Victorov, S.B., El-Rabii, H., Gubin, S.A., Maklashova, I.V., and Bogdanova, Yu.A., J. Energ. Mater., 2010, vol. 28, p. 35.

    Article  ADS  Google Scholar 

  26. Viktorov, S.B., Gubin, S.A., Maklashova, I.V., and Pepekin, V.I., Yad. Fiz. Inzh., 2010, vol. 1, no. 1, p. 80.

    Google Scholar 

  27. Byers-Brown, W. and Horton, T.V., Mol. Phys., 1988, vol. 63, no. 1, p. 125.

    Article  ADS  Google Scholar 

  28. Fried, L.E. and Howard, W.M., J. Chem. Phys., 1998, vol. 109, no. 17, p. 7338.

    Article  ADS  Google Scholar 

  29. Victorov, S.B. and Gubin, S.A., Proc. 13th Int. Detonation Symposium, Norfolk: Los Alamos National Laboratory, 2006, p. 13.1118.

  30. Ree, F.H., J. Chem. Phys., 1984, vol. 81, no. 3, p. 1251.

    Article  ADS  Google Scholar 

  31. Ree, F.H., J. Chem. Phys., 1982, vol. 76, no. 12, p. 6287.

    Article  ADS  Google Scholar 

  32. Ree, F.H., J. Chem. Phys., 1983, vol. 78, p. 409.

    Article  ADS  Google Scholar 

  33. MCCCS Towhee. http://towhee.sourceforge.net.

  34. Martin, M.G., Mol. Simul., 2013, vol. 39, p. 1212.

    Article  Google Scholar 

  35. Nellis, W.J., Radousky, H.B., Hamilton, D.C., Mitchell, A.C., Holmes, N.C., Christianson, K.B., and van Thiel, M., J. Chem. Phys., 1991, vol. 94, p. 2244.

    Article  ADS  Google Scholar 

  36. Nellis, W.J. and Mitchell, A.C., J. Chem. Phys., 1980, vol. 73, p. 6137.

    Article  ADS  Google Scholar 

  37. Mochalov, M.A., Zhernokletov, M.V., Il’kaev, R.I., et al., J. Exp. Theor. Phys., 2010, vol. 110, no. 1, p. 67.

    Article  ADS  Google Scholar 

  38. Voskoboinikov, I.M., Gogulya, M.F., and Dolgoborodov, Yu.A., Dokl. Akad. Nauk SSSR, 1979, vol. 246, no. 3, p. 579.

    ADS  Google Scholar 

  39. Eksperimental’nye dannye po udarno-volnovomu szhatiyu i adiabaticheskomu rasshireniyu kondensirovannykh veshchestv (Experimental Data on Shock Wave Compression and Adiabatic Expansion of Condensed Matter), Trunin, R.F., Gudarenko, L.F., Zhernokletov, M.V., and Simakov, G.V., Eds., Sarov, 2006.

    Google Scholar 

  40. Ross, M. and Ree, F.H., J. Chem. Phys., 1980, vol. 73, no. 12, p. 6146.

    Article  ADS  Google Scholar 

  41. LASL Shock Hugoniot Data, Marsh, S.P., Ed., San Diego: Univ. California Press, 1980.

    Google Scholar 

  42. Wang, C. and Zhang, P., J. Chem. Phys., 2010, vol. 132, no. 15, 154307.

    Article  ADS  Google Scholar 

  43. Anikeev, A.A., Bogdanova, Yu.A., and Gubin S.A., Gorenie Vzryv, 2015, vol. 8, no. 1, p. 183.

    Google Scholar 

  44. Brennan, J.K. and Rice, B.M., Molecular simulation of shocked materials using reaction ensemble Monte Carlo: Part 1. Application to nitrogen dissociation, Tech. Rep. 2006, NTIS no. 200710.

  45. Kazarnovskii, Ya.S., Simonov, G.B., and Aristov, G.E., Zh. Fiz. Khim., 1940, vol. 14, nos. 5–6, p. 774.

    Google Scholar 

Download references

Funding

The study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement with JIHT RAS no. 075-15-2020-785 of September 23, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Bogdanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanova, Y.A., Gubin, S.A. Study of Versions of Thermodynamic Perturbation Theory for Simulation of the Properties of Binary Mixtures of Fluids in Wide Ranges of Pressures and Temperatures. High Temp 60, 621–630 (2022). https://doi.org/10.1134/S0018151X22040034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22040034

Navigation