Skip to main content
Log in

Effect of Ballast Region on Glow Discharge Parameters at Medium and High Pressures

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The behavior of a glow discharge in a cylindrical tube with an attached buffer ballast gas region is studied in the pressure range from 10 to 400 Torr. The current–voltage characteristics of a glow discharge in a tube are obtained taking into account the effect of various volumes of the buffer ballast region. It is shown that, by varying the volume of the buffer ballast area, it is possible to change E/N parameter and discharge current density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Andrade, F.J., Wetzel, W.C., Chan, G.C.-Y., Webb, M.R., Gamez, G., Ray, S.J., and Hieftje, G.M., Anal. At. Spectrom., 2006, vol. 21, p. 1175.

    Article  Google Scholar 

  2. Reghu, T., Kumar, M., Biswas, A.K., and Kukreja, L.M., Opt. Laser Technol., 2011, vol. 43, p. 904.

    Article  ADS  Google Scholar 

  3. Arkhipenko, V.I., Kirillov, A.A., Safronau, Ya.A., Simonchik, L.V., and Zgirouski, S.M., Plasma Sources Sci. Technol., 2009, vol. 18, p. 045013.

    Article  ADS  Google Scholar 

  4. Arkhipenko, V.I., Kirillov, A.A., Safronau, Y.A., and Simonchika, L.V., Eur. Phys. J. D, 2010, vol. 60, p. 455.

    Article  ADS  Google Scholar 

  5. Akishev, Yu.S., Medvedev, M.A., Napartovich, A.P., Petryakov, A.V., Trushkin, N.I., and Shafikov, A.G., Plasma Phys. Rep., 2017, vol. 43, p. 472.

    Article  ADS  Google Scholar 

  6. Joh, H.M., Kang, H.R., Chung, T.H., and Kim, S.J., Contrib. Plasma Phys., 2014, vol. 42, p. 3656.

    Google Scholar 

  7. Mob, K.K., Reinsberg, K.-G., and Broekaert, J.A.C., J. Anal. At. Spectrom., 2014, vol. 29, p. 674.

    Article  Google Scholar 

  8. Saifutdinov, A.I., Fairushin, I.I., and Kashapov, N.F., JETP Lett., 2016, vol. 104, no. 3, p. 180.

    Article  ADS  Google Scholar 

  9. Voiteshonok, V.S., Golovin, A.I., Egorova, E.K., Lomakin, B.N., Turkin, A.V., and Shloido, A.I., High Temp., 2017, vol. 55, no. 5, p. 665.

    Article  Google Scholar 

  10. Raizer, Yu.P., Fizika gazovogo razryada (Gas Discharge Physics), Dolgoprudnyi: Intellekt, 2009.

  11. Surzhikov, S.T., Fizicheskaya mekhanika gazovogo razryada (Physical Mechanics of Gas Discharge), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2006.

  12. Kudryavtsev, A.A., Smirnov, A.S., and Tsendin, L.D., Fizika tleyushchego razryada (Glow Discharge Phys-ics), St. Petersburg: Lan’, 2010.

  13. Vasilyak, L.M., Polyakov, D.N., Fortov, V.E., and Shumova, V.V., High Temp., 2011, vol. 49, no. 5, p. 623.

    Article  Google Scholar 

  14. Volynets, A.V., Lopaev, D.V., Rakhimova, T.V., Chukalovsky, A.A., Mankelevich, Yu.A., Popov, N.A., Zotovich, A.I., and Rakhimov, A.T., J. Phys. D: Appl. Phys., 2018, vol. 51, p. 364002.

    Article  Google Scholar 

  15. Golubovskii, Yu., Kalanov, D., and Maiorov, V., Phys. Rev. E, 2017, vol. 96, 023206.

    Article  ADS  Google Scholar 

  16. Golubovskii, Yu.B., Siasko, A.V., and Nekuchaev, V.O., Plasma Sources Sci. Technol., 2019, vol. 28, p. 045007.

    Article  ADS  Google Scholar 

  17. Saifutdinov, A.I., Fadeev, S.A., Saifutdinova, A.A., and Kashapov, N.F., JETP Lett., 2015, vol. 102, no. 10, p. 637.

    Article  ADS  Google Scholar 

  18. Al-Khavat, Sh., J. Appl. Spectrosc., 1996, vol. 63, p. 752.

    Article  ADS  Google Scholar 

  19. Shi, X., Wang, X.B., Jin, W., and Demokan, M.S., Appl. Phys. B, 2008, vol. 91, p. 377.

    Article  ADS  Google Scholar 

  20. Zavershinskii, I.P., Klimov, A.I., Molevich, N.E., and Sugak, S.S., High Temp., 2018, vol. 56, no. 3, p. 454.

    Article  Google Scholar 

  21. Pugliese, E., Meucci, R., Euzzor, S., Freire, J.G., and Gallas, J.A.C., Sci. Rep., 2015, vol. 5, p. 8447.

    Article  ADS  Google Scholar 

  22. Fadeev, S.A. and Saifutdinov, A.I., Plasma Phys. Rep., 2017, vol. 43, p. 1080.

    Article  ADS  Google Scholar 

  23. Fortov, V.E. and Morfill, G.E., Complex and Dusty Plasmas: From Laboratory to Space, Boca Raton: CRC, 2010.

    Google Scholar 

  24. Fortov, V.E., Khrapak, A.G., Khrapak, S.A., Molotkov, V.I., and Petrov, O.F., Phys.—Usp., 2004, vol. 47, p. 447.

    Article  ADS  Google Scholar 

  25. Maiorov, S.A., Kodanova, S.K., Dosbolayev, M.K., Ramazanov, T.S., Golyatina, R.I., Bastykova, N.Kh., and Utegenov, A.U., Phys. Plasmas, 2015, vol. 22, p. 033705.

    Article  ADS  Google Scholar 

  26. Karasev, V.Yu., Dzlieva, E.S., Pavlov, S.I., Ermolenko, M.A., Novikov, L.A., and Maiorov, S.A., Contrib. Plasma Phys., 2016, vol. 56, nos. 3–4, p. 197.

    Article  ADS  Google Scholar 

  27. Fedoseev, A.V., Salnikov, M.V., Demin, N.A., Sukhinin, G.I., Vasiliev, M.M., and Petrov, O.F., Phys. Plasmas, 2018, vol. 25, 083710.

    Article  ADS  Google Scholar 

  28. Golubovskii, Yu., Karasev, V., and Kartasheva, A., Plasma Sources Sci. Technol., 2017, vol. 26, p. 115003.

    Article  ADS  Google Scholar 

  29. Ding, Z., Kudryavtsev, A.A., Saifutdinov, A.I., Sysoev, S.S., Yuan, C., Li, S., Yao, J., and Zhou, Z., IEEE Trans. Plasma Sci., 2019, vol. 47, p. 4391.

    Article  ADS  Google Scholar 

  30. Aramyan, A.R., Galechyan, G.A., and Manukyan, G.V., Laser Phys., 2007, vol. 17, no. 9, p. 1129.

    Article  ADS  Google Scholar 

  31. Aramyan, A.R., Galechyan, G.A., and Manukyan, G.V., Acoust. Phys., 2008, vol. 54, no. 6, p. 774.

    Article  ADS  Google Scholar 

  32. Entsiklopediya nizkotemperaturnoi plazmy (Encyclopedia of Low-Temperature Plasma), vol. 11-4: Gazovye i plazmennye lazery (Gas and Plasma Lasers), Fortov, V.E., Ed., Moscow: Nauka, 2005.

  33. McDaniel, E.W., Applied Atomic Collision Physics, vol. 3: Gas Lasers, McDaniel, E.W. and Nighan, W.L., Eds., New York: Academic, 1982.

  34. Kutasi, K., Hartmann, P., Bano, G., and Donko, Z., Plasma Sources Sci. Technol., 2005, vol. 14, p. 1.

    Article  ADS  Google Scholar 

  35. Sakiyama, Y., Graves, D.B., and Stoffels, E., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 095204.

    Article  ADS  Google Scholar 

  36. Kent, C., Phys. Rev., 1962, vol. 126, p. 1235.

    Article  ADS  Google Scholar 

  37. Garscadden, A. and Lee, D.A., Int. J. Electron., 1966, vol. 20, p. 567.

    Article  Google Scholar 

  38. Dyatko, N.A., Ionikh, Yu.Z., Meshchanov, A.V., and Napartovich, A.P., IEEE Trans. Plasma Sci., 2011, vol. 39, p. 2532.

    Article  ADS  Google Scholar 

  39. Ionikh, Y.Z., Dyatko, N.A., Meshchanov, A.V., Napartovich, A.P., and Petrov, F.B., Plasma Sources Sci. Technol., 2012, vol. 21, p. 055008.

    Article  ADS  Google Scholar 

  40. Dyatko, N.A., Napartovich, A.P., and Ionikh, Y.Z., Atoms, 2019, vol. 7, no. 1, p. 13.

    Article  ADS  Google Scholar 

Download references

Funding

The research on the electrical characteristics of the discharge was financed by a grant of the Russian Science Foundation, project no. 19-71-10055; the software digital processing of the data from the oscilloscope was carried out as part of a state task of the Institute of Mechanics and Engineering – Subdivision of the Federal State Budgetary Institution of Science “Kazan Scientific Center of the Russian Academy of Sciences.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Fadeev or A. I. Saifutdinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeev, S.A., Saifutdinov, A.I., Kashapov, N.F. et al. Effect of Ballast Region on Glow Discharge Parameters at Medium and High Pressures. High Temp 60, 143–147 (2022). https://doi.org/10.1134/S0018151X22020043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22020043

Navigation