Skip to main content
Log in

Measurements of the Particle Concentration Fields in a Two-Phase Flow Past a Blunt Body

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

This paper presents the results of measurements of the solid particle concentration field near a frontal point of a cylindrical body with a flat end. We restore the particle concentration fields based on their image identification obtained by photographic fixation at low shutter speeds. The experiments revealed the effect of increasing the particle concentration near the body surface, which appears more clearly with the increase in the local particle concentration in the oncoming flow. We analyze the mechanisms of the particle concentration increase in the flow around bodies by flows containing particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Varaksin, A.Yu., High Temp., 2018, vol. 56, no. 2, p. 275.

    Article  Google Scholar 

  2. Varaksin, A.Yu., High Temp., 2020, vol. 58, no. 5, p. 716.

    Article  Google Scholar 

  3. Alqallaf, J., Ali, N., Teixeira, J.A., and Addali, A., Processes, 2020, vol. 8, no. 8, p. 984.

    Article  Google Scholar 

  4. Reedy, M.W., Eden, T.J., Potter, J.K., and Wolfe, D.E., Surf. Coat. Technol., 2011, vol. 206, nos. 2–3, p. 464.

    Article  Google Scholar 

  5. Evstifeev, A., Kazarinov, N., Petrov, Y., Witek, L., and Bednarz, A., Eng. Failure Anal., 2018, vol. 87, p. 15.

    Article  Google Scholar 

  6. Poursaeidi, E., Niaei, A.M., Lashgari, M., and Torkashvand, K., Appl. Phys. A: Mater. Sci. Process., 2018, vol. 124, no. 9, p. 629.

    Article  ADS  Google Scholar 

  7. Enikeev, G., Abdulin, A., Yanibaev, R., and Kasatkin, A., Proc. 2020 Int. Conf. on Dynamics and Vibroacoustics of Machines, Samara, 2020. https://doi.org/10.1109/DVM49764.2020.9243926

  8. Nash, J.W.K., Zekos, I., and Stack, M.M., Energies, 2021, vol. 14, no. 15, p. 4555.

    Article  Google Scholar 

  9. Prieto, R. and Karlsson, T., Wind Energy, 2021, vol. 24, no. 9, p. 1031.

    Article  ADS  Google Scholar 

  10. Castorrini, A., Venturini, P., Corsini, A., and Rispoli, F., Wind Energy, 2021, vol. 24, no. 8, p. 917.

    Article  ADS  Google Scholar 

  11. Verma, A.S., Noi, S.D., Ren, Z., Jiang, Z., and Teuwen, J.J.E., Energies, 2021, vol. 14, no. 6, p. 1629.

    Article  Google Scholar 

  12. Hong, B., Li, X., Li, Y., Li, Y., Yu, Y., Wang, Y., Gong, J., and Ai, D., Energies, 2021, vol. 14, no. 13, p. 3804.

    Article  Google Scholar 

  13. Zeng, Q. and Qi, W., Lubricants, 2020, vol. 8, no. 9, p. 92.

    Article  Google Scholar 

  14. Hu, J., Zhang, H., Zhang, J., Niu, S., and Cai, W., Mechanika, 2021, vol. 27, no. 3, p. 193.

    Article  Google Scholar 

  15. Ma, G., Lin, Z., and Zhu, Z., Eng. Failure Anal., 2020, vol. 118, 104827.

    Article  Google Scholar 

  16. Lin, Z., Sun, X.W., Yu, T.C., Zhang, Y.F., Li, Y., and Zhu, Z.C., Powder Technol., 2020, vol. 366, p. 395.

    Article  Google Scholar 

  17. Reviznikov, D.L., Sposobin, A.V., and Dombrovsky, L.A., Comput. Therm. Sci., 2015, vol. 7, no. 4, p. 313.

    Article  Google Scholar 

  18. Dombrovsky, L.A., Reviznikov, D.L., and Sposobin, A.V., Int. J. Heat Mass Transfer, 2016, vol. 93, p. 853.

    Article  Google Scholar 

  19. Reviznikov, D.L., Sposobin, A.V., and Sukharev, T.Yu., High Temp., 2017, vol. 55, no. 3, p. 400.

    Article  Google Scholar 

  20. Reviznikov, D.L., Sposobin, A.V., and Ivanov, I.E., High Temp., 2018, vol. 56, no. 6, p. 884.

    Article  Google Scholar 

  21. Reviznikov, D.L., Sposobin, A.V., and Ivanov, I.E., High Temp., 2020, vol. 58, no. 2, p. 278.

    Article  Google Scholar 

  22. Reviznikov, D.L., Sposobin, A.V., and Ivanov, I.E., High Temp., 2020, vol. 58, no. 6, p. 839.

    Article  Google Scholar 

  23. Varaksin, A.Yu., Dokl. Phys., 2021, vol. 66, no. 3, p. 72.

  24. Varaksin, A.Yu., High Temp., 2022, vol. 60, Suppl. 1, p. S39.

  25. Zhelebovskiy, A.A., Mochalov, A.A., and Varaksin, A.Yu., Sci. Visualization, 2021, vol. 13, no. 3, p. 1.

    Google Scholar 

  26. Varaksin, A.Yu., High Temp., 2019, vol. 57, no. 4, p. 555.

    Article  Google Scholar 

  27. Varaksin, A.Yu., High Temp., 2020, vol. 58, no. 4, p. 595.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 20-19-00551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Varaksin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Dikhter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varaksin, A.Y., Zhelebovskii, A.A. & Mochalov, A.A. Measurements of the Particle Concentration Fields in a Two-Phase Flow Past a Blunt Body. High Temp 60, 374–378 (2022). https://doi.org/10.1134/S0018151X22010308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X22010308

Navigation