Skip to main content
Log in

Electrophysics of the Combustion of Hydrocarbon Fuel in the Liquid Propellant Rocket Engine Chamber

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A mathematical model of the generation of an intrinsic electric field in the system high-enthalpy ionized flow–nozzle wall has been developed, and numerical calculations have been carried out in relation to the chamber of a sustainer liquid-propellant rocket engine. The electrical conductivity of a weakly ionized plasma of combustion products of oxygen + kerosene fuel has been determined. Numerical calculations of the electric current to the grounded wall of the nozzle were carried out and were verified with the experimental data of other authors. It was found that the integral value of the current to the wall was 800–7500 mA at a given potential of the nozzle wall of 20–250 mV, depending on the outflow mode. The calculated values of the voltage and current can be used to diagnose the working process in a noncontact way and to build an algorithm for a next-generation engine-emergency protection system for tests at the stand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Kolesnikov, A.F., Teplofiz. Vys. Temp., 2010, vol. 48, no. 1 (suppl.), p. 131.

    Google Scholar 

  2. Rudinskii, A.V. and Yagodnikov, D.A., High Temp., 2017, vol. 55, no. 5, p. 808.

    Article  Google Scholar 

  3. Cherepnin, S.N., Combust., Explos. Shock Waves (Engl. Transl.), 1990, vol. 26, no. 2, p. 178.

  4. Potapov, G.P., Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 1978, no. 4, p. 112.

  5. Potapov, G.P. and Dregalin, A.F., Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 1977, no. 5, p. 90.

  6. Yagodnikov, D.A., Voronetskii, A.V., and Pushkin N.M., Combust., Explos. Shock Waves (Engl. Transl.), 1995, vol. 31, no. 4, p. 450.

  7. Nagel’, Yu.A., Teplofiz. Vys. Temp., 1987, vol. 25, no. 6, p. 1246.

    Google Scholar 

  8. Nagel’, Yu.A., Tech. Phys., 1999, vol. 44, no. 8, p. 918.

    Article  Google Scholar 

  9. Vatazhin, A.B. and Ulybyshev, K.E., Fluid Dyn., 2000, vol. 35, no. 5, p. 748.

    Article  Google Scholar 

  10. Ivashchenko, Yu.S. and Sadyrin, A.L., Combust., Explos. Shock Waves (Engl. Transl.), 1990, no. 2, p. 188.

  11. Alemasov, V.E., Dregalin, A.F., and Tishin, A.P., Teoriya raketnykh dvigatelei (Rocket Engine Theory), Moscow: Mashinostroenie, 1989.

  12. Kuchinskii, V.V. and Nikitenko, A.B., Tech. Phys., 2010, vol. 55, no. 8, p. 1087.

    Article  Google Scholar 

  13. Konovalov, V.P. and Son, E.E., High Temp., 2011, vol. 49, no. 1, p. 138.

    Article  Google Scholar 

  14. Pergament, It.S. and Calcote, H.F., Symp. (Int.) Combustion, 1967, vol. 11, no. 1, p. 597.

    Article  Google Scholar 

  15. Balwanz, W.W., Proc. 10th Int. Symp. on Combustion, The Combustion Institute, 1965, p. 685.

  16. Fortov, V.E., Khrapak, A.G., Yakubov, I.T., Fizika neideal’noi plazmy (Nonideal Plasma Physics), Moscow: Fizmatlit, 2004.

  17. Trusov, B.G., Mater. 3-go Mezhdun. simpoz. po teor. i prikl. plazmokhimii (Proc. 3rd Int. Symp. on Theoretical and Applied Plasma Chemistry), Ples, 2002, p. 217.

  18. NPO “Energomash.” http://www.npoenergomash.ru/ dejatelnost/engines/rd171m/.

  19. Kieffer, L.J., At. Data, 1971, vol. 2, p. 293.

    Article  ADS  Google Scholar 

  20. Pinchuk, V.A., Tech. Phys., 1997, vol. 42, no. 8, p. 872.

    Article  Google Scholar 

  21. Pushkin, N.M., Elektrofizika raketno-kosmicheskogo poleta i elektrofizicheskie metody kontrolya i diagnostiki izdelii RKT (Electrophysics of Rocket and Space Flight and Electrophysical Methods of Control and Diagnostics of Rocket and Spacecraft Products), Moscow: Nauchnyi Konsul’tant, 2016.

Download references

Funding

This work was supported by the state program no. 0705-2020-0044 of fundamental research of the laboratory “Intra-chamber processes of rocket and jet engines.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rudinskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudinskii, A.V., Yagodnikov, D.A. Electrophysics of the Combustion of Hydrocarbon Fuel in the Liquid Propellant Rocket Engine Chamber. High Temp 59, 268–276 (2021). https://doi.org/10.1134/S0018151X2103010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X2103010X

Navigation