Skip to main content
Log in

Pyrolitic Methods of the Thermal Processing of Solid Municipal Waste

  • REVIEW
  • Published:
High Temperature Aims and scope

Abstract

The results of studies on the application of pyrolytic methods for the processing of solid municipal waste into liquid and gaseous fuels are presented. The features and types of pyrolytic processes are reviewed, and the key pyrolytic products are analyzed in detail with respect to the process pressure and heating rate of the initial mass of solid municipal waste. Since the liquid products produced with standard pyrolysis have a high content of oxygen-rich compounds and water, catalytic methods are employed to make high-quality boiler or transport fuels. The main types of catalysts, their properties, and their effects on the process are considered. The advantages of a two-stage process, in which the pyrolytic products at the second stage of the process undergo high-temperature catalytic cracking with the formation of synthesis gas (syngas), are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. in relation to the dry ash-free mass.

REFERENCES

  1. Volkova, A.V., Rynok utilizatsii otkhodov (Waste Disposal Market), Moscow: Vysshaya Shkola Ekon., 2018.

  2. He, P., Chen, L., Shao, L., Zhang, H., and Lu, F., Water Res., 2019, vol. 159, p. 38.

    Article  Google Scholar 

  3. Glushkov, D., Paushkina, K., Shabardin, D., Strizhak, P., and Gutareva, N., J. Environ. Manage., 2019, vol. 231, p. 896.

    Article  Google Scholar 

  4. Huang, B., Wang, X., Kua, H., Geng, Y., Bleischwitz, R., and Ren, J., Resour., Conserv. Recycl., 2018, vol. 129, p. 36.

    Article  Google Scholar 

  5. Tugov, A.N. and Rodionov, V.I., Tverd. Bytovye Otkhody, 2016, no. 8, p. 20.

  6. Kumar, A. and Samadder, S.R., Waste Manage., 2017, vol. 69, p. 407.

    Article  Google Scholar 

  7. Mukherjee, C., Denney, J., Mbonimpa, E.G., Slagley, J., and Bhowmik, R., Renewable Sustainable Energy Rev, 2020, vol. 119, 109512.

    Article  Google Scholar 

  8. Wyrzykowska-Ceradini, B., Gullett, B.K., Tabor, D., and Touati, A., Atmos. Environ., 2011, vol. 45, no. 24, p. 4008.

    Article  ADS  Google Scholar 

  9. Sipra, A.T., Gao, N., and Sarwar, H., Fuel Process. Technol., 2018, vol. 175, p. 131.

    Article  Google Scholar 

  10. Gerasimov, G.Ya., IOP Conf. Ser.: Earth Environ. Sci., 2019, vol. 272, 022116.

  11. Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyzynska, R., Reynolds, A.J., Spencer, N., and Jouhara, H., Therm. Sci. Eng. Prog., 2017, vol. 3, no. 1, p. 171.

    Article  Google Scholar 

  12. Lavrenov, V.A., Larina, O.M., Sinelshchikov, V.A., and Sychev, G.A., High Temp., 2016, vol. 54, no. 6, p. 892.

    Article  Google Scholar 

  13. Chen, D., Yin, L., Wang, H., and He, P., Waste Manage., 2014, vol. 34, no. 12, p. 2466.

    Article  Google Scholar 

  14. Martinez, J.D., Puy, N., Murillo, R., Garcia, T., Navarro, M.V., and Mastral, A.M., Renewable Sustainable Energy Rev., 2013, vol. 23, p. 179.

    Article  Google Scholar 

  15. Lombardi, L., Carnevale, E., and Corti, A., Waste Manage., 2015, vol. 37, p. 26.

    Article  Google Scholar 

  16. Neves, D., Thunman, H., Matos, A., Tarelho, L., and Gómez-Barea, A., Prog. Energy Combust. Sci., 2011, vol. 37, no. 5, p. 611.

    Article  Google Scholar 

  17. Campuzano, F., Brown, R.C., and Martinez, J.D., Renewable Sustainable Energy Rev., 2019, vol. 102, p. 372.

    Article  Google Scholar 

  18. Mohan, D., Pittman, C.U., and Steele, P.H., Energy Fuels, 2006, vol. 20, no. 3, p. 848.

    Article  Google Scholar 

  19. Singh, R., Krishna, B.B., Mishra, G., Kumar, J., and Bhaskar, T., Renewable Energy, 2016, vol. 98, p. 226.

    Article  Google Scholar 

  20. Yang, Y., Brammer, J.G., Ouadi, M., Samanya, J., Hornung, A., Xu, H.M., and Li, Y., Fuel, 2013, vol. 103, p. 247.

    Article  Google Scholar 

  21. Antropov, A.P., Batenin, V.M., and Zaichenko, V.M., High Temp., 2015, vol. 53, no. 1, p. 124.

    Article  Google Scholar 

  22. Garcia-Nunez, J.A., Pelaez-Samaniego, M.R., Garcia-Perez, M.E., Fonts, I., Abrego, J., Westerhof, R.J.M., and Garcia-Perez, M., Energy Fuels, 2017, vol. 31, no. 6, p. 5751.

    Article  Google Scholar 

  23. Glushkov, D., Paushkina, K., Shabardin, D., and Strizhak, P., J. Cleaner Prod., 2018, vol. 201, p. 1029.

    Article  Google Scholar 

  24. Diaz Silvarrey, L.S. and Phan, A.N., Int. J. Hydrogen Energy, 2016, vol. 41, no. 37, p. 16352.

    Article  Google Scholar 

  25. Anca-Couce, A., Prog. Energy Combust. Sci., 2016, vol. 53, p. 41.

    Article  Google Scholar 

  26. Sharuddin, S.D.A., Abnisa, F., Daud, W.M.A.W., and Aroua, M.K., Energy Convers. Manage., 2016, vol. 115, p. 308.

    Article  Google Scholar 

  27. Sophonrat, N., Sandström, L., Zaini, I.N., and Yang, W., Appl. Energy, 2018, vol. 229, p. 314.

    Article  Google Scholar 

  28. Wang, S., Dai, G., Yang, H., and Luo, Z., Prog. Energy Combust. Sci., 2017, vol. 62, p. 33.

    Article  Google Scholar 

  29. Direktor, L.B., Sinelshchikov, V.A., and Sychev, G.A., High Temp., 2020, vol. 58, no. 1, p. 50.

    Article  Google Scholar 

  30. Tsai, W.T., Lee, M.K., and Chang, Y.M., Bioresour. Technol., 2007, vol. 98, no. 1, p. 22.

    Article  Google Scholar 

  31. Bridgwater, A.V., Biomass Bioenergy, 2012, vol. 38, p. 68.

    Article  Google Scholar 

  32. Owusu, P.A., Banadda, N., Zziwa, A., Seay, J., and Kiggundu, N., J. Anal. Appl. Pyrolysis, 2018, vol. 130, p. 285..

    Article  Google Scholar 

  33. Gómez-Barea, A., Nilsson, S., Barrero, F.V., and Campoy, M., Fuel Process. Technol., 2010, vol. 91, no. 11, p. 1624.

    Article  Google Scholar 

  34. Thunman, H., Niklasson, F., Johnsson, F., and Leckner, B., Energy Fuels, 2001, vol. 15, no. 6, p. 1488.

    Article  Google Scholar 

  35. Morf, P., Hasler, P., and Nussbaumer, T., Fuel, 2002, vol. 81, no. 7, p. 843.

    Article  Google Scholar 

  36. Velghe, I., Carleer, R., Yperman, J., and Schreurs, S., J. Anal. Appl. Pyrolysis, 2011, vol. 92, no. 2, p. 366.

    Article  Google Scholar 

  37. Miskolczi, N., Ates, F., and Borsodi, N., Bioresour. Technol., 2013, vol. 144, p. 370.

    Article  Google Scholar 

  38. Wang, N., Chen, D., Arena, U., and He, P., Appl. Energy, 2017, vol. 191, p. 111.

    Article  Google Scholar 

  39. Galadima, A. and Muraza, O., Energy Convers. Manage., 2015, vol. 105, p. 338.

    Article  Google Scholar 

  40. Wan, S. and Wang, Y., Front. Chem. Sci. Eng., 2014, vol. 8, no. 3, p. 280.

    Article  ADS  Google Scholar 

  41. Chen, T., Zhang, J., and Wu, J., Bioresour. Technol., 2013, vol. 211, p. 502.

    Article  Google Scholar 

  42. Dickerson, T. and Soria, J., Energies, 2013, vol. 6, no. 1, p. 514.

    Article  Google Scholar 

  43. Wang, N., Qian, K., Chen, D., Zhao, H., and Yin, L., Waste Manage., 2020, vol. 102, p. 380.

    Article  Google Scholar 

  44. Chen, X., Chen, Y., Yang, H., Chen, W., Wang, X., and Chen, H., Bioresour. Technol., 2017, vol. 233, p. 15.

    Article  Google Scholar 

  45. Song, Q., Zhao, H., Xing, W., Song, L., Yang, L., Yang, D., and Shu, X., Waste Manage., 2018, vol. 78, p. 621.

    Article  Google Scholar 

  46. He, M., Xiao, B., Liu, S., Hu, Z., Guo, X., Luo, S., and Yang, F., J. Anal. Appl. Pyrolysis, 2010, vol. 87, no. 2, p. 181.

    Article  Google Scholar 

  47. Gandidi, I.M., Susila, M.D., Mustofa, A., and Pambudi, N.A., J. Energy Inst., 2018, vol. 91, no. 2, p. 304.

    Article  Google Scholar 

  48. Rehan, M., Miandad, R., Barakat, M., Ismail, I., Almeelbi, T., Gardy, J., Hassanpour, A., Khan, M., Demirbas, A., and Nizami, A., Int. Biodeterior. Biodegrad., 2017, vol. 119, p. 162.

    Article  Google Scholar 

  49. Lu, P., Huang, Q., Chi, Y., Wang, F., and Yan, J., Proc. Combust. Inst., 2019, vol. 37, no. 3, p. 2673.

    Article  Google Scholar 

  50. Veses, A., Sanahuja-Parejo, O., Callen, M.S., Murillo, R., and García, T., Waste Manage., 2020, vol. 101, p. 171.

    Article  Google Scholar 

  51. Batenin, V.M., Zaichenko, V.M., Kosov, V.F, and Sinel’shchikov, V.A., Dokl. Chem., 2012, vol. 446, no. 2, p. 196.

    Article  Google Scholar 

  52. Zaichenko, V.M., Lavrenov, V.A., and Sinel’shchi-kov, V.A., Al’tern. Energ. Ekol., 2016, nos. 23–24, p. 42.

  53. He, M., Hu, Z., Xiao, B., Li, J., Guo, X., Luo, S., Yang, F., Feng, Y., Yang, G., and Liu, S., Int. J. Hydrogen Energy, 2009, vol. 34, no. 1, p. 195.

    Article  Google Scholar 

  54. Saad, J.M. and Williams, P.T., Waste Manage., 2016, vol. 58, p. 214.

    Article  Google Scholar 

  55. Lopez, G., Artetxe, M., Amutio, M., Alvarez, J., Bilbao, J., and Olazar, M., Renewable Sustainable Energy Rev., 2018, vol. 82, no. 1, p. 576.

    Article  Google Scholar 

  56. Kachalov, V.V., Lavrenov, V.A., Lishchiner, I.I., Malova, O.V., Tarasov, A.L., and Zaichenko, V.M., J. Phys.: Conf. Ser., 2016, vol. 774, 012136.

    Google Scholar 

  57. Yan, Q., Yu, F., Liu, J., Street, J., Gao, J., Cai, Z., and Zhang, J., Bioresour. Technol., 2013, vol. 127, p. 281.

    Article  Google Scholar 

  58. Altarawneh, M., Dlugogorski, B.Z., Kennedy, E.M., and Mackie, J.C., Prog. Energy Combust. Sci., 2009, vol. 35, no. 3, p. 245.

    Article  Google Scholar 

  59. Chirkov, V.G., Therm. Eng., 2007, no. 8, p. 35.

  60. Direktor, L.B., Zaichenko, V.M., and Sinelshchikov, V.A., High Temperature, 2017, vol. 55, p. 124.

  61. Chen, C., Jin, Y., and Chi, Y., J. Anal. Appl. Pyrolysis, 2014, vol. 110, p. 108.

    Article  Google Scholar 

  62. Isemin, R., Klimov, D., Larina, O., Sytchev, G., Zaichenko, V., and Milovanov, O., Fuel, 2019, vol. 243, p. 230.

    Article  Google Scholar 

  63. Li, S., Yan, J., Li, R., Chi, Y., and Cen, K., Powder Technol., 2002, vol. 126, no. 3, p. 217.

    Article  Google Scholar 

  64. Gikas, P., Zhu, B., Batistatos, N.I., and Zhang, R., J. Environ. Manage., 2018, vol. 216, p. 96.

    Article  Google Scholar 

  65. Haydary, J., Susa, D., and Dudas, J., Waste Manage., 2013, vol. 33, no. 5, p. 1136.

    Article  Google Scholar 

  66. Ismail, T.M., Ren, X., and Abd El-Salam, M., Waste Manage., 2016, vol. 49, p. 272.

    Article  Google Scholar 

  67. Malkow, T., Waste Manage., 2004, vol. 24, no. 1, p. 53.

    Article  Google Scholar 

  68. Mancini, G., Viotti, P., Luciano, A., Raboni, M., and Fini, D., Waste Manage., 2014, vol. 34, no. 11, p. 2347.

    Article  Google Scholar 

  69. Luz, F.C., Cordiner, S., Manni, A., Mulone, M., and Rocco, V., Energy Convers. Manage., 2018, vol. 168, p. 98.

    Article  Google Scholar 

  70. Brassard, P., Godbout, S., and Raghavan, V., Biosyst. Eng., 2017, vol. 161, p. 80.

    Article  Google Scholar 

  71. Mastral, F.J., Esperanza, E., Garcia, P., and Juste, M., J. Anal. Appl. Pyrolysis, 2002, vol. 63, no. 1, p. 1.

    Article  Google Scholar 

  72. Xue, Y., Zhou, S., Brown, R.C., Kelcar, A., and Bai, X., Fuel, 2015, vol. 156, p. 40.

    Article  Google Scholar 

  73. Treedet, W. and Suntivarakorn, R., Fuel Process. Technol., 2018, vol. 179, p. 17.

    Article  Google Scholar 

  74. Lappas, A.A., Samolada, M.C., Iatridis, D.K., Voutetakis, S.S., and Vasalos, I.A., Fuel, 2002, vol. 81, no. 16, p. 2087.

    Article  Google Scholar 

  75. Alvarez, J., Amutio, M., Lopez, G., Barbarias, I., Bilbao, J., and Olazar, M., Chem. Eng. J., 2015, vol. 273, p. 173.

    Article  Google Scholar 

  76. Gerasimov, G., Khaskhachikh, V., Potapov, O., Dvoskin, G., Kornileva, V., and Dudkina, L., Waste Manage., 2019, vol. 87, p. 218.

    Article  Google Scholar 

  77. Chen, L., Zhang, X.-D., Sun, L.-Z., Xu, H.-J., Si, H., and Mei, N., Energy Fuels, 2015, vol. 30, no. 12, p. 10222.

    Article  Google Scholar 

  78. Fu, P., Bai, X., Yi, W., Li, Z., and Li, Y., Energy Convers. Manage., 2018, vol. 171, p. 855.

    Article  Google Scholar 

  79. Ma, Z., Gao, N., Xie, L., and Li, A., J. Anal. Appl. Pyrolysis, 2014, vol. 105, p. 183.

    Article  Google Scholar 

  80. Gerasimov, G. and Volkov, E., Fuel Process. Technol., 2015, vol. 139, p. 108.

    Article  Google Scholar 

  81. Volkov, E., Oil Shale, 2013, vol. 30, no. 2, p. 95.

    Article  Google Scholar 

  82. Rumyantseva, A., Berezyuk, M., Savchenko, N., and Rumyantseva, E., IOP Conf. Series: Earth Environ. Sci., 2017, vol. 72, no. 1, 012015.

  83. Bernardo, M., Lapa, N., Gonçalves, M., Barbosa, R., Mendes, B., and Pinto, F., Waste Manage., 2010, vol. 30, no. 4, p. 628.

    Article  Google Scholar 

  84. Zhou, H., Wu, C., Onwudili, J.A., Meng, A., Zhang, Y., and Williams, P.T., Waste Manage., 2015, vol. 36, p. 136.

    Article  Google Scholar 

  85. Kulkarni, P.S., Crespo, J.G., and Afonso, C.A.M., Environ. Int., 2008, vol. 34, no. 1, p. 139.

    Article  Google Scholar 

  86. Gao, Q., Edo, M., Larsson, S.H., Collina, E., Rudolfsson, M., Gallina, M., et al., J. Anal. Appl. Pyrolysis, 2017, vol. 123, p. 126.

    Article  Google Scholar 

  87. Gerasimov, G.Ya., Combust., Explos. Shock Waves (Eng-l. Transl.), 2001, vol. 37, no. 2, p. 148.

  88. Lu, P., Huang, Q., Bourtsalas, A.C.T., Themelis, N.J., Chi, Y., and Yan, J., J. Environ. Sci., 2018, vol. 78, p. 13.

    Article  Google Scholar 

  89. Gerasimov, G., Chemosphere, 2016, vol. 158, p. 100.

    Article  ADS  Google Scholar 

  90. Hu, B., Huang, Q., Chi, Y., and Yan, J., J. Cleaner Prod., 2019, vol. 218, p. 920.

    Article  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research, project no. 20-58-00043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Khaskhachikh.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaskhachikh, V.V., Larina, O.M., Sychev, G.A. et al. Pyrolitic Methods of the Thermal Processing of Solid Municipal Waste. High Temp 59, 373–383 (2021). https://doi.org/10.1134/S0018151X2103007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X2103007X

Navigation