Skip to main content
Log in

Gordon Method for the Generation of Nanowires and High-Temperature Processes in Superfluid Helium

  • PLASMA INVESTIGATIONS
  • Published:
High Temperature Aims and scope

Abstract

The Gordon method for the generation of metal nanowires in superfluid helium as a result of the laser evaporation of a metal surface that is contiguous with superfluid helium has been analyzed. The cluster stage of the process, in which a beam of evaporated metal atoms is transformed into a gas of metal clusters so that further relaxation of the evaporated metal is due to radiation by metal clusters, is considered. These processes are experimentally compared for the case in which a beam of evaporated tungsten atoms is fed into superfluid helium, a vacuum, and helium gas. Since the relaxation process in this stage runs at a temperature of several thousands of kelvin in the region of the cluster presence, the radiative mechanism of cluster cooling is similar in the considered cases; however, for superfluid and normal helium, a significant contribution to the cooling rate is from the heat transfer in helium. It follows from the experiment that the next stage of evaporated metal relaxation in superfluid helium includes the division of the metal-containing region into many small regions bounded by individual vortices. Each vortex captures a large number of clusters that move to the axis of this vortex and are aggregated therein. This leads to the formation of metal nanowires with a length that is about two orders of magnitude larger than their radius. These nanowires comprise a special physical object of both fundamental and practical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Landau, L.D., Zh. Eksp. Teor. Fiz., 1941, vol. 11, p. 592.

    ADS  Google Scholar 

  2. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1978, vol. 2.

  3. Landau, L.D. and Lifshits, E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1988.

    Google Scholar 

  4. Feynman, R.P., Statistical Mechanics—A Set of Lectures, Reading, MA: W.A. Benjamine, 1972.

    MATH  Google Scholar 

  5. Donnelly, R.J., Quantized Vortices in Helium II, Cambridge: Cambridge Univ. Press, 1991.

    Google Scholar 

  6. Donnelly, R.J. and Barenghi, C.F., J. Phys. Chem. Ref. Data, 1998, vol. 27, p. 1254.

    Article  Google Scholar 

  7. Toennies, J.P. and Vilesov, A.F., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, p. 2622.

    Article  Google Scholar 

  8. Khrapak, A.G. and Bronin, S.Ya., JETP Lett., 2017, vol. 105, p. 797.

    Article  ADS  Google Scholar 

  9. Williams, G.A. and Packard, R.E., Phys. Rev. Lett., 1974, vol. 3W3, p. 280.

  10. Berloff, N.G. and Roberts, P.H., Phys. Rev. B: Condens. Matter Mater. Phys., 2000, vol. 63, 024510.

    Article  ADS  Google Scholar 

  11. Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Sizov, V.D., and Khodos, I.I., Low Temp. Phys., 2010, vol. 36, p. 590.

    Article  ADS  Google Scholar 

  12. Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Sizov, V.D., and Khodos, I.I., J. Exp. Theor. Phys., 2011, vol. 112, p. 1061.

    Article  ADS  Google Scholar 

  13. Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Sizov, V.D., and Khodos, I.I., Chem. Phys. Lett., 2012, vol. 519, p. 64.

    Article  ADS  Google Scholar 

  14. Anisimov, S.I., Imas, Ya.A., Romanov, G.S., and Khodyko, Yu.V., Deistvie izlucheniya bol’shoi moshchnosti na metally (Effects of High-Power Radiation on Metals), Moscow: Nauka, 1970.

  15. Gordon, E.B., Karabulin, A.V., Kulish, M.I., Matyushenko, V.I., and Stepanov, M.E., J. Phys. Chem. A, 2017, vol. 121, p. 9185.

    Article  Google Scholar 

  16. Gordon, E.B., Kulish, M.I., Karabulin, A.V., and Matyushenko, V.I., Low Temp. Phys., 2017, vol. 43, p. 1086.

    Article  ADS  Google Scholar 

  17. Gordon, E.B., Kulish, M.I., Karabulin, A.V., Matyushenko, V.I., and Stepanov, M.E., J. Quantum Spectrosc. Radiat. Transfer, 2019, vols. 222–223, p. 180.

    Article  ADS  Google Scholar 

  18. Bronin, S.Ya. and Polishchuk, V.P., Teplofiz. Vys. Temp., 1984, vol. 22, p. 550.

    Google Scholar 

  19. Brykin, M.V., Vorob’ev, V.S., and Shelyukhaev, B.P., Teplofiz. Vys. Temp., 1987, vol. 25, p. 468.

    Google Scholar 

  20. Smirnov, B.M., Nanoclusters and Microparticles in Gases and Vapors, Berlin: De Gruyter, 2012.

    Book  MATH  Google Scholar 

  21. Lushnikov, A.A., Pakhomov, A.V., and Chernyaeva, G.A., Dokl. Akad. Nauk SSSR, 1987, vol. 292, p. 86.

    Google Scholar 

  22. Lushnikov, A.A., Negin, A.E., and Pakhomov, A.V., Chem. Phys. Lett., 1990, vol. 175, p. 138.

    Article  ADS  Google Scholar 

  23. Lushnikov, A.A., Negin, A.E., Pakhomov, A.V., and Smirnov, B.M., Sov. Phys. Usp., 1991, vol. 34, p. 160.

    Article  ADS  Google Scholar 

  24. Smirnov, B.M., Phys.—Usp., 1991, vol. 34, p. 711.

    ADS  Google Scholar 

  25. Vorob’ev, V.S., Phys.—Usp., 1993, vol. 36, p. 1129.

    Article  ADS  Google Scholar 

  26. Smirnov, B.M., J. Exp. Theor. Phys., 2016, vol. 123, p. 769.

    Article  ADS  Google Scholar 

  27. Gordon, E.B., Nishida, R., Nomura, R., and Okuda, Y., JETP Lett., 2007, vol. 85, p. 581.

    Article  Google Scholar 

  28. Gordon, E.B. and Okuda, Y., Low Temp. Phys., 2009, vol. 35, p. 209.

    Article  ADS  Google Scholar 

  29. Gordon, E.B., Karabulin, A.V., Morozov, A.A., Matyushenko, V.I., Sizov, V.D., and Knodos, I.I., J. Phys. Chem. Lett., 2014, vol. 5, p. 1072.

    Article  Google Scholar 

  30. Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Sizov, V.D., Rostovshchikova, T.N., Nikolaev, S.A., Lokteva, E.S., Golubina, E.V., Maslakov, K.I., Krotova, I.N., Gurevich, S.A., Kozhevin, V.M., and Yavsin, D.A., High Energy Chem., 2016, vol. 50, p. 292.

    Article  Google Scholar 

  31. Gordon, E.B., Karabulin, A.V., Matyushenko, V.I., Rostovshchikova, T.N., Nikolaev, S.A., and Lokteva, E.S., Theor. Exp. Chem., 2016, vol. 52, p. 75.

    Article  Google Scholar 

  32. Weber, B. and Scholl, R., J. Appl. Phys., 1993, vol. 74, p. 607.

    Article  ADS  Google Scholar 

  33. Frenzel, U., Kalmbach, U., Kreisle, D., and Recknzgel, E., Surf. Rev. Lett., 1996, vol. 3, p. 505.

    Article  ADS  Google Scholar 

  34. Frenzel, U., Hammer, U., Westje, H., and Kreisle, D., Z. Phys. D: At., Mol. Clusters, 1997, vol. 40, p. 108.

    Article  Google Scholar 

  35. Landau, L.D. and Lifshits, E.M., Elektrodinamika sploshnykh sred (Continuous Media Electrodynamics), Moscow: Nauka, 1982.

  36. Wigner, E.P. and Seits, F., Phys. Rev., 1934, vol. 46, p. 509.

    Article  ADS  Google Scholar 

  37. Wigner, E.P., Phys. Rev., 1934, vol. 46, p. 1002.

    Article  ADS  Google Scholar 

  38. Smirnov, B.M., Clusters and Small Particles in Gases and Plasmas, New York: Springer, 1999.

    Google Scholar 

  39. Reif, F., Statistical and Thermal Physics, Boston: McGrow Hill, 1965.

    Google Scholar 

  40. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1978, vol. 1.

  41. Smirnov, B.M. and Weidele, H., JETP Lett., 1999, vol. 69, p. 490.

    Article  ADS  Google Scholar 

  42. Smirnov, B.M. and Weidele, H., J. Exp. Theor. Phys., 1999, vol. 89, p. 1030.

    Article  ADS  Google Scholar 

  43. Petit, A.T. and Dulong, P.L., Annal. Chim. Phys., 1819, vol. 10, p. 395.

    Google Scholar 

  44. Ochkin, V.N., Spektroskopiya nizkotemperaturnoi plazmy (Low-Temperature Plasma Spectroscopy), Moscow: Fizmatlit, 2006.

  45. Ochkin, V.N., Spectroscopy of Low Temperature Plasma, Weinheim: Wiley, 2009.

    Book  Google Scholar 

  46. Wien, W., Philos. Mag., 1897, series 5, vol. 43, p. 214.

  47. Wien’s Displacement Law. https://en.wikipedia.org/wiki/Wien’s-displacement-law.

  48. Smalley, R., Laser Chem., 1983, vol. 2, p. 167.

    Article  Google Scholar 

  49. Hagena, O.F., Surf. Sci., 1981, vol. 106, p. 101.

    Article  ADS  Google Scholar 

  50. Hagena, O.F., Z. Phys. D: At., Mol. Clusters, 1987, vol. 4, p. 291.

    Article  ADS  Google Scholar 

  51. Hagena, O.F., Z. Phys. D: At., Mol. Clusters, 1990, vol. 17, p. 157.

    Article  Google Scholar 

  52. Hagena, O.F., Z. Phys. D: At., Mol. Clusters, 1991, vol. 20, p. 425.

    Article  Google Scholar 

  53. Handbook of Chemistry and Physics. Lide, D.R., Ed., London: CRC Press, 86th ed., 200-32004.

  54. Forrest, S.R. and Witten, T.A., J. Phys. A, 1979, vol. 12, p. L109.

    Article  ADS  Google Scholar 

  55. Smirnov, B.M., Phys.—Usp., 2017, vol. 60, p. 1236.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Son.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karabulin, A.V., Kulish, M.I., Matyushenko, V.I. et al. Gordon Method for the Generation of Nanowires and High-Temperature Processes in Superfluid Helium. High Temp 59, 143–149 (2021). https://doi.org/10.1134/S0018151X21030068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21030068

Navigation