Skip to main content
Log in

Wave Dynamics of Gas Suspensions and Individual Particles during Resonance Oscillations

  • REVIEW
  • Published:
High Temperature Aims and scope

Abstract

We review here the results of experimental and theoretical studies on the dynamics of gas suspensions and individual particles in wave fields of resonators of various shapes. The effects of the coagulation and sedimentation of aerosols of various natures under acoustic and shock-wave impacts, as well as the patterns of the trapping, focusing, and separation of particles in wave fields, are considered. The main forces leading to the drift of particles in the wave field, as well as the effect of acoustic streaming , are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

REFERENCES

  1. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987.

  2. Ganiev, R.F. and Ukrainskii, L.E., Dinamika chastits pri vozdeistvii vibratsii (Particle Dynamics under Vibration), Kiev: Naukova Dumka, 1975.

  3. Ganiev, R.F., Kobasko, N.I., et al., Kolebatel’nye yavleniya v mnogofaznykh sredakh i ikh ispol’zovanie v tekhnologii (Oscillatory Phenomena in Multiphase Media and Their Use in Technology), Kiev: Tekhnika, 1980.

  4. Ilgamov, M.A., Zaripov, R.G., Galiullin, R.G., and Repin, V.B., Appl. Mech. Rev., 1996, vol. 49, no. 3, p. 137.

    Article  ADS  Google Scholar 

  5. Ganiev, R.F. and Ukrainskii, L.E., Nelineinaya volnovaya mekhanika i tekhnologii. Volnovye i kolebatel’nye yavleniya v osnove vysokikh tekhnologii (Nonlinear Wave Mechanics and Technologies: Wave and Oscillatory Phenomena at the Heart of High Technologies), Moscow: Inst Komp’yut. Issled., 2011.

  6. Ley, W.H. and Bruus, H., Phys. Rev. Appl., 2017, vol. 8, 024020.

    Article  ADS  Google Scholar 

  7. Habibi, R., Devendran, C., and Neild, A., Lab. Chip, 2017, vol. 17, p. 3279.

    Article  Google Scholar 

  8. Bergmann, L., Der Ultraschall und seine Anwendung in Wissenschaft und Technik (Ultrasound and Its Application in Science and Technology), Stuttgart: Hirzel, 1954, 6th ed.

  9. Mednikov, E.P., Akusticheskaya koagulyatsiya i osazhdenie aerozolei (Acoustic Coagulation and Precipitation of Aerosols), Moscow: Akad. Nauk SSSR, 1963.

  10. Fuks, N.A., Mekhanika aerozolei (Aerosol Mechanics), Moscow: Akad. Nauk SSSR, 1955.

  11. Voloshchuk, V.M. and Sedunov, Yu.S., Protsessy koagulyatsii v dispersnoi sisteme (Coagulation Processes in a Dispersed System), Leningrad: Gidrometeoizdat, 1975.

  12. Voloshchuk, V.M., Kineticheskaya teoriya koagulyatsii (Kinetic Theory of Coagulation), Leningrad: Gidrometeoizdat, 1984.

  13. Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, New York: Wiley, 1982.

    Google Scholar 

  14. Akulov, N.I. and Yudaev, V.F., Akusticheskaya koagulyatsiya aerozolei i ee apparaturnoe oformlenie (Acoustic Coagulation of Aerosols and Its Instrumentation), Moscow: Promizdat, 2003.

  15. Temkin, S., Suspension Acoustics: An Introduction to the Physics of Suspensions, New York: Cambridge Univ. Press, 2005.

    Book  MATH  Google Scholar 

  16. Khmelev, V.N., Shalunov, A.V., Shalunova, K.V., Tsyganok, S.N., Barsukov, R.V., and Slivin, A.N., Ul’trazvukovaya koagulyatsiya aerozolei (Ultrasonic Aerosol Coagulation), Biisk: Altaisk. Gos. Tekh. Univ., 2010.

  17. Shaw, D.T., in Recent Developments in Aerosol Sciences, New York: Wiley, 1978.

    Google Scholar 

  18. Hoffmann, T.L. and Koopmann, G.H., J. Acoust. Soc. Am., 1996, vol. 99, no. 4, p. 2130.

    Article  ADS  Google Scholar 

  19. Hoffmann, T.L. and Koopmann, G.H., J. Acoust. Soc. Am., 1997, vol. 101, no. 6, p. 3421.

    Article  ADS  Google Scholar 

  20. Varaksin, A.Yu., High Temp., 2013, vol. 51, no. 3, p. 377.

    Article  Google Scholar 

  21. Varaksin, A.Yu., High Temp., 2014, vol. 52, no. 5, p. 752.

    Article  Google Scholar 

  22. Varaksin, A.Yu., High Temp., 2015, vol. 53, no. 3, p. 423.

    Article  Google Scholar 

  23. Varaksin, A.Yu., High Temp., 2018, vol. 56, no. 2, p. 275.

    Article  Google Scholar 

  24. Varaksin, A.Yu., High Temp., 2019, vol. 57, no. 4, p. 555.

    Article  Google Scholar 

  25. Gulyaev, A.M. and Kuznetsov, V.M., Akust. Zh., 1962, vol. 8, no. 4, p. 473.

    Google Scholar 

  26. Temkin, S., Phys. Fluids, 1970, vol. 13, p. 1639.

    Article  ADS  Google Scholar 

  27. Shuster, K., Fichman, M., Goldshtein, A., and Gutfinger, C., Phys. Fluids, 2002, vol. 14, no. 5, p. 1802.

    Article  ADS  Google Scholar 

  28. Alexeev, A. and Gutfinger, C., Phys. Fluids, 2004, vol. 16, p. 1028.

    Article  ADS  Google Scholar 

  29. Temkin, S. and Kim, S.S., J. Fluid Mech., 1980, vol. 96, p. 137.

    Article  ADS  Google Scholar 

  30. Temkin, S. and Ecker, G.Z., J. Fluid Mech., 1989, vol. 202, p. 467.

    Article  ADS  Google Scholar 

  31. Berdugo, N. and Liberzon, D., Int. J. Multiphase Flow, 2019, vol. 126, 103217.

    Article  Google Scholar 

  32. Meshkinzar, A. and Al-Jumaily, A.M., J. Aerosol Sci., 2020, vol. 139, 105466.

    Article  ADS  Google Scholar 

  33. Amiri, M., Sadighzadeh, A., and Falamaki, C., Aerosol Air Qual. Res., 2016, vol. 16, p. 3012.

    Article  Google Scholar 

  34. Sonin, N.V., Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 2004, no. 2, p. 76.

  35. Sonin, N.V., Russ. Aeronaut., 2008, vol. 51, no. 1, p. 97.

    Article  Google Scholar 

  36. Gubaidullin, D.A., Zaripov, R.G., Galiullin, R.G., Galiullina, E.R., and Tkachenko, L.A., High Temp., 2004, vol. 42, no. 5, p. 794.

    Article  Google Scholar 

  37. Gubaidullin, D.A., Zaripov, R.G., and Tkachenko, L.A., Dokl. Phys., 2013, vol. 58, p. 392.

    Article  ADS  Google Scholar 

  38. Gubaidullin, D.A., Zaripov, R.G., and Tkachenko, L.A., Dokl. Phys., 2017, vol. 62, p. 263.

    Google Scholar 

  39. Gubaidullin, D.A., Zaripov, R.G., Tkachenko, L.A., and Shaidullin, L.R., High Temp., 2019, vol. 57, no. 5, p. 768.

    Article  Google Scholar 

  40. Gubaidullin, D.A., Zaripov, R.G., Tkachenko, L.A., and Shaidullin, L.R., J. Acoust. Soc. Am., 2019, vol. 145, no. 1, p. EL30.

    Article  ADS  Google Scholar 

  41. Zhenghui, Q., Yaji, H., Naso, V., and Wei, D., Powder Technol., 2017, vol. 322, p. 24.

    Article  Google Scholar 

  42. Zhenghui, Q., Liang, S., Pan, X., Bi, X., Zhang, S., Biana, C., Gua, H., Chen, L., Cheng, M., Jin, Y., Shi, S., and Zhu, D., Powder Technol., 2020, vol. 364, p. 738.

    Article  Google Scholar 

  43. Goldshtein, A., Shuster, K., Vainshtein, P., Fichman, M., and Gutfinger, C., J. Fluid Mech., 1998, vol. 360, p. 1.

    Article  MathSciNet  ADS  Google Scholar 

  44. Gubaidullin, D.A., Zaripov, R.G., Galiullin, R.G., Tkachenko, L.A., and Pyaterkin, A.Yu., Nelineinyi Mir, 2008, vol. 6, nos. 5–6, p. 334.

    Google Scholar 

  45. Gubaidullin, D.A., Zaripov, R.G., Tkachenko, L.A., and Shaidullin, L.R., J. Eng. Phys. Thermophys., 2015, vol. 88, no. 4, p. 871.

    Article  Google Scholar 

  46. Gubaidullin, D.A., Zaripov, R.G., and Tkachen-ko, L.A., High Temp., 2016, vol. 54, no. 6, p. 867.

    Article  Google Scholar 

  47. Capéran, Ph., Somers, J., Richter, K., and Fourcaudot, S., J. Aerosol Sci., 1995, vol. 26, no. 4, p. 595.

    Article  ADS  Google Scholar 

  48. Somers, J., Capéran, Ph., Richter, K., and Fourcaudot, S., J. Aerosol Sci., 1995, vol. 26, no. 8, p. 1317.

    Article  ADS  Google Scholar 

  49. Liu, J., Zhang, G., Zhou, J., Wang, J., Zhao, W., and Cen, K., Powder Technol., 2009, vol. 193, no. 1, p. 20.

    Article  Google Scholar 

  50. Sheng, Ch. and Shen, X., Aerosol Sci. Technol., 2007, vol. 41, no. 1, p. 1.

    Article  ADS  Google Scholar 

  51. Riera, E., Gallego-Juárez, J.A., and Mason, T.J., Ultrason. Sonochem., 2006, vol. 13, no. 2, p. 107.

    Article  Google Scholar 

  52. Davidson, G.A. and Jager, W., J. Sound Vib., 1980, vol. 72, no. 1, p. 123.

    Article  ADS  Google Scholar 

  53. Zhao, Y., Zeng, X., and Tian, Z., AIP Conf. Proc., 2015, vol. 1685, 060005.

    Article  Google Scholar 

  54. Noorpoor, A.R., Sadighzadeh, A., and Habibnejad, H., Int. J. Environ. Res., 2013, vol. 7, no. 1, p. 131.

    Google Scholar 

  55. Van Wijhe, A., Doctoral (Phys.) Dissertation, Delft: Delft Univ. Technol., 2013.

  56. Wang, X., Yang, J., Wang, Y., and Li, Y., Adv. Mater. Res., 2014, vols. 955–959, p. 2434.

    Article  Google Scholar 

  57. Shi, Y., Wei, J., Qiu, J., Chu, H., Bai, W., and Wang, G., Powder Technol., 2020, vol. 362, p. 37.

    Article  Google Scholar 

  58. Shi, Y., Wei, J., Bai, W., and Wang, G., Adv. Powder Technol., 2020, vol. 31, no. 6, p. 2394.

    Article  Google Scholar 

  59. Antonnikova, A.A., Korovina, N.V., and Kudryashova, O.B., Open J. Acoust., 2013, vol. 3, no. 3, p. 16.

    Google Scholar 

  60. Antonnikova, A.A., Korovina, N.V., and Kudryashova, O.B., Izv. Tomsk. Politekh. Univ., 2014, vol. 324, no. 2, p. 57.

    Google Scholar 

  61. Kudryashova, O.B., Antonnikova, A.A., and Korovina, N.V., Russ. Phys. J., 2015, vol. 58, no. 2, p. 271.

    Article  Google Scholar 

  62. Kudryashova, O., Antonnikova, A., Korovina, N., and Akhmadeev, I., Arch. Acoust., 2015, vol. 40, no. 4, p. 485.

    Article  Google Scholar 

  63. Khmelev, V.N., Shalunov, A.V., Golykh, R.N., and Nesterov, V.A., Proc. Int. Conf. of Young Specialists on Micro/Nanotechnologies and Electron Devices, EDM, 2019, p. 180.

  64. Khmelev, V.N., Shalunov, A.V., and Shalunova, K.V., in Izmerenie, avtomatizatsiya i modelirovanie v promyshlennosti i nauchnykh issledovaniyakh (Measurement, Automation and Simulation in Industry and Scientific Research), Biisk: Altaisk. Gos. Tekh. Univ., 2012, p. 183.

  65. Khmelev, V.N., Shalunov, A.V., Golykh, R.N., Nesterov, V.A., Shalunova, K.V., and Galakhov, A.N., Yuzhno-Sib. Nauchn. Vestn., 2014, vol. 5, no. 1, p. 17.

    Google Scholar 

  66. Khmelev, V.N., Shalunov, A.V., Golykh, R.N., Nesterov, V.A., and Shalunova, K.V., Am. J. Eng. Res., 2013, vol. 2, no. 12, p. 265.

    Google Scholar 

  67. Zu, K., Yao, Y., Cai, M., Zhao, F., and Cheng, D.L., J. Aerosol Sci., 2017, vol. 114, p. 62.

    Article  ADS  Google Scholar 

  68. Imani, R.J. and Robert, E., Aerosol Sci. Technol., 2018, vol. 52, no. 1, p. 57.

    Article  ADS  Google Scholar 

  69. Sarabia, E.R.-F. and Gallego-Juarez, J.A., J. Sound Vib., 1986, vol. 110, no. 3, p. 413.

    Article  ADS  Google Scholar 

  70. Zhenghui, Q., Yaji, H., and Vincenzo, N., Powder Technol., 2017, vol. 322, p. 24.

    Article  Google Scholar 

  71. Yuen, W.T., Fu, S.C., Kwan, J.K.C., and Chao, C.Y.H., Aerosol Sci. Technol., 2014, vol. 48, p. 907.

    Article  ADS  Google Scholar 

  72. Yuen, W.T., Fu, S.C., and Chao, C.Y.H., Aerosol Sci. Technol., 2016, vol. 50, no. 1, p. 52.

    Article  ADS  Google Scholar 

  73. Yuen, W.T., Fu, S.C., and Chao, C.Y.H., J. Aerosol Sci., 2017, vol. 104, p. 79.

    Article  ADS  Google Scholar 

  74. Hasegawa, K., Watanabe, A., Kaneko, A., and Abe, Y., Micromachines, 2020, vol. 11, no. 4, p. 343.

    Article  Google Scholar 

  75. Gonzalez, I., Hoffmann, T.L., and Gallego, J.A., J. Aerosol Sci., 2000, vol. 31, no. 12, p. 1461.

    Article  ADS  Google Scholar 

  76. Gonzalez, I., Hoffmann, T.L., and Gallego, J.A., Acta Acust. Acust., 2002, vol. 88, no. 1, p. 19.

    Google Scholar 

  77. Gonzalez, I., Gallego-Juarez, J.A., and Riera, E., J. Aerosol Sci., 2003, vol. 34, p. 1611.

    Article  ADS  Google Scholar 

  78. Markauskas, D., Maknickas, A., and Kacianauskas, R., Proc. Eng., 2015, vol. 102, p. 1218.

    Article  Google Scholar 

  79. Shen, G.Q., Huang, X.Y., He, C.L., Zhang, S.P., and An, L.S., Powder Technol., 2018, vol. 325, p. 145.

    Article  Google Scholar 

  80. Lu, M., Fang, M., He, M., Liu, S., and Luo, Z., RSC Adv., 2019, vol. 9, no. 9, p. 5224.

    Article  ADS  Google Scholar 

  81. Fan, F., Xu, X., Zhang, S., and Su, M., Aerosol Sci. Technol., 2019, vol. 53, no. 10, p. 1204.

    Article  ADS  Google Scholar 

  82. Argo, T.F., Zadler, B.J., and Meegan, G.D., J. Acoust. Soc. Am., 2020, vol. 147, p. EL93.

    Article  ADS  Google Scholar 

  83. Whitworth, G. and Coakley, W., J. Acoust. Soc. Am., 1992, vol. 91, no. 1, p. 79.

    Article  ADS  Google Scholar 

  84. Hertz, H.M., J. App. Phys., 1995, vol. 78, no. 8, p. 4543.

    Article  Google Scholar 

  85. Kogan, S., Kaduschak, G., and Sinha, D., J. Acoust. Soc. Am., 2004, vol. 116, no. 4, p. 1967.

    Article  ADS  Google Scholar 

  86. Goddart, G. and Kaduchak, G., J. Acoust. Soc. Am., 2005, vol. 117, no. 6, p. 3440.

    Article  ADS  Google Scholar 

  87. Huffman, J.A., Jayne, J.T., Drewnick, F., Aiken, A.C., Onasch, T., Worsnop, D.R., and Jimenez, J.L., Aerosol Sci. Technol., 2005, vol. 39, no. 12, p. 1143.

    Article  ADS  Google Scholar 

  88. Akhatov, I.S., Hoey, J.M., Swenson, O.F., and Schulz, D.L., J. Aerosol Sci., 2008, vol. 39, p. 691.

    Article  ADS  Google Scholar 

  89. Vainshtein, P. and Shapiro, M., Part. Sci. Technol., 2011, vol. 29, no. 5, p. 450.

    Article  Google Scholar 

  90. Bruus, H., Dual, J., Hawkes, J., Hill, M., Laurell, T., Nilsson, J., Radel, S., Sadhal, S., and Wiklund, M., Lab Chip, 2011, vol. 11, p. 3579.

    Article  Google Scholar 

  91. Mikhailenko, K.I. and Valeeva, Yu.R., Vychisl. Metody Program., 2013, vol. 14, no. 3, p. 328.

    Google Scholar 

  92. King, L., Proc. R. Soc., 1934, vol. 147, no. 861, p. 212.

  93. Rayleigh, L., Theory of Sound, New York: Dover, 1945, 2nd ed.

    MATH  Google Scholar 

  94. Westervelt, P.J., J. Acoust. Soc. Am., 1951, vol. 23, no. 4, p. 312.

    Article  MathSciNet  ADS  Google Scholar 

  95. Dukhin, S.S., Kolloid. Zh., 1960, vol. 22, no. 1, p. 128.

    Google Scholar 

  96. Gor’kov, L.P., Dokl. Akad. Nauk SSSR, 1961, vol. 140, no. 1, p. 88.

    Google Scholar 

  97. Czyz, H., Arch. Acoust., 1987, vol. 12, nos. 3–4, p. 199.

    Google Scholar 

  98. Czyz, H., Acustica, 1990, vol. 70, p. 23.

    Google Scholar 

  99. Marston, P. and Thiessen, D., Ann. N. Y. Acad. Sci., 2004, vol. 1027, p. 414.

    Article  ADS  Google Scholar 

  100. Hahn, P., Leibacher, I., Baasch, T., and Dual, J., Lab Chip, 2015, vol. 15, p. 4302.

    Article  Google Scholar 

  101. Doinikov, A.A., J. Fluid Mech., 1994, vol. 267, p. 1.

    Article  MathSciNet  ADS  Google Scholar 

  102. Danilov, S.D. and Mironov, M.A., J. Acoust. Soc. Am., 2000, vol. 107, no. 1, p. 143.

    Article  ADS  Google Scholar 

  103. Gubaidullin, D.A. and Osipov, P.P., J. Eng. Phys. Thermophys., 2011, vol. 84, no. 2, 270.

    Article  Google Scholar 

  104. Gubaidullin, D.A. and Osipov, P.P., J. Eng. Phys. Thermophys., 2013, vol. 86, no. 1, p. 51.

    Article  Google Scholar 

  105. Gubaidullin, D.A., Osipov, P.P., and Nasyrov, R.R., J. Eng. Phys. Thermophys., 2018, vol. 91, no. 3, p. 688.

    Article  Google Scholar 

  106. Gubaidullin, D.A., Ossipov, P.P., and Abdyushev, A.A., Appl. Math. Model., 2018, no. 62, p. 181.

  107. Lei, J., Cheng, F., and Li, K., Micromachines, 2020, vol. 11, p. 240.

    Article  Google Scholar 

  108. Vainshtein, P., Fichman, M., Shuster, K., and Gutfinger, C., J. Fluid Mech., 1996, vol. 306, p. 31.

    Article  ADS  Google Scholar 

  109. Dain, Y., Fichman, M., Gutfinger, C., Pnueli, D., and Vainshtein, P., J. Aerosol Sci., 1995, vol. 26, no. 4, p. 575.

    Article  ADS  Google Scholar 

  110. Alexeev, A. and Gutfinger, C., J. Acoust. Soc. Am., 2003, vol. 114, no. 3, p. 1357.

    Article  ADS  Google Scholar 

  111. Temkin, S., Phys. Fluids, 1994, vol. 6, p. 2294.

    Article  ADS  Google Scholar 

  112. Vainshtein, P., Fichman, M., and Pnueli, D., J. Aerosol Sci., 1992, vol. 23, p. 631.

    Article  ADS  Google Scholar 

  113. Osiptsov, A.N. and Rybdylova, O.D., Theor. Found. Chem. Tekhnol., 2011, vol. 45, no. 2, p. 164.

    Article  Google Scholar 

  114. Tukmakov, A.L., Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 2005, no. 2, p. 30.

  115. Tukmakov, A.L., Teplofiz. Aeromekh., 2005, no. 2, p. 219.

  116. Tukmakov, A.L., Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh., 2006, no. 4, p. 30.

  117. Tukmakov, A.L., Acoust. Phys., 2009, vol. 55, no. 2, p. 345.

    Article  ADS  Google Scholar 

  118. Tukmakov, A.L., Acoust. Phys., 2009, vol. 55, no. 3, 253.

    Article  ADS  Google Scholar 

  119. Tukmakov, A.L., J. Appl. Mech. Tech. Phys., 2011, vol. 52, no. 4, 186.

    Article  MathSciNet  ADS  Google Scholar 

  120. Tukmakov, A.L., J. Appl. Mech. Tech. Phys., 2011, vol. 52, no. 4, 590.

    Article  MathSciNet  ADS  Google Scholar 

  121. Tonkonog, V.G. and Tukmakov, D.A., J. Eng. Phys. Thermophys., 2013, vol. 86, no. 2, p. 614.

    Article  Google Scholar 

  122. Tukmakov, A.L., Bayanov, R.I., and Tukmakov, D.A., Thermophys. Aeromech., 2015, vol. 22, no. 3, p. 305.

    Article  ADS  Google Scholar 

  123. Tukmakov, A.L., J. Appl. Mech. Tech. Phys., 2015, vol. 88, no. 1, p. 9.

    MathSciNet  Google Scholar 

  124. Rodriguez, V., Saurel, R., Jourdan, G., and Houas, L., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, vol. 88, no. 6, 063011.

    Article  Google Scholar 

  125. Oh, J., Choi, S., and Kim, J., Powder Technol., 2015, vol. 274, p. 135.

    Article  Google Scholar 

  126. Barnkob, R., Augustsson, P., Laurell, T., and Bruus, H., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2012, vol. 86, no. 5, 056307.

    Article  ADS  Google Scholar 

  127. Lutz, B.R., Chen, J., and Schwartz, D.T., Anal. Chem., 2006, vol. 78, no. 15, p. 5429.

    Article  Google Scholar 

  128. Hammarstrom, B., Laurell, T., and Nilsson, J., Lab Chip, 2012, vol. 12, no. 21, p. 4296.

    Article  Google Scholar 

  129. Hammarstrom, B., Nilson, B., Laurell, T., Nilsson, J., and Ekstrom, S., Anal. Chem., 2014, vol. 86, no. 21, p. 10560.

    Article  Google Scholar 

  130. Antfolk, M., Muller, P.B., Augustsson, P., Bruus, H., and Laurell, T., Lab Chip, 2014, vol. 14, no. 15, p. 2791.

    Article  Google Scholar 

  131. Devendran, C., Gralinski, I., and Neild, A., Microfluid. Nanofluid., 2014, vol. 17, p. 1.

    Article  Google Scholar 

  132. Vainshtein, P. and Shapiro, M., J. Aerosol Sci., 2008, vol. 39, p. 929.

    Article  ADS  Google Scholar 

  133. Paul, W. and Raether, M., Z. Phys., 1955, vol. 140, p. 262.

    Article  ADS  Google Scholar 

  134. Vainshtein, P. and Shapiro, M., J. Aerosol Sci., 2009, vol. 40, p. 707.

    Article  ADS  Google Scholar 

  135. Vainshtein, P. and Shapiro, M., Int. J. Part. Sci. Tech., 2011, vol. 29, no. 5, p. 450.

    Article  Google Scholar 

  136. Collins, D.J., O’Rorke, R., Davendran, C., Ma, Z., Han, J., Neild, A., and Ai, Y., Phys. Rev. Lett., 2018, vol. 120, 074502.

    Article  ADS  Google Scholar 

  137. Silva, G.T., Lopes, J.H., Leao-Neto, J.P., Nichols, M.K., and Drinkwater, B.W., Phys. Rev. Ap-pl., 2019, vol. 11, 054044.

    Article  Google Scholar 

  138. Tung, K.W., Chung, P.S., Wu, C., Man, T., Tiwary, S., Wu, B., Chou, Y.-F., Yang, F.-I., and Chiou, P.-Y., Lab Chip, 2019, vol. 19, p. 3714.

    Article  Google Scholar 

  139. Collino, R.R., Ray, T.R., Fleming, R.C., Sasaki, C.H., Haj-Hariri, H., and Begley, M.R., Extreme Mech. Lett, 2015, vol. 5, p. 37.

    Article  Google Scholar 

  140. Mao, Z.M., Li, P., Wu, M.X., Bachman, H., Mesyngier, N., Guo, X.S., Liu, S., Costanzo, F., and Huang, T.J., ACS Nano, 2017, vol. 11, p. 603.

    Article  Google Scholar 

  141. Fornell, A., Garofalo, F., Nilsson, J., Bruus, H., and Tenje, M., Microfluid. Nanofluid., 2018, vol. 22, p. 75.

    Article  Google Scholar 

  142. Wu, M., Ozcelik, A., Rufo, J., Wang, Z., Fang, R., and Jun Huang, T., Microsyst. Nanoeng., 2019, vol. 5, p. 32.

    Article  ADS  Google Scholar 

  143. Gonzalez, I., Earl, J., Fernandez, L.J., Sainz, B., Pinto, A., Monge, R., Alcala, S., Castillejo, A., Soto, J.L., and Carrato, A.A., Micromachines, 2018, vol. 9, p. 128.

    Article  Google Scholar 

  144. Pulliam, T.H. and Steger, J.L., AIAA J., 1980, vol. 18, no. 2, p. 159.

    Article  ADS  Google Scholar 

  145. Fletcher, C.A.J., Computational Techniques for Fluid Dynamics, Berlin: Springer, 1988.

    Book  MATH  Google Scholar 

  146. Lei, J., Glynne-Jones, P., and Hill, M., Microfluid. Nanofluid., 2017, vol. 21, no. 2, 23.

    Article  Google Scholar 

  147. Vanhille, C., J. Acoust. Soc. Am., 2004, vol. 116, no. 1, p. 194.

    Article  ADS  Google Scholar 

  148. Thompson, J.F., Thames, F.C., and Mastin, C.W., J. Comput. Phys., 1977, vol. 24, p. 274.

    Article  ADS  Google Scholar 

  149. Yano, T., J. Acoust. Soc. Am., 1999, vol. 106, p. 7.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-11-50112.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Gubaidullin or L. A. Tkachenko.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gubaidullin, D.A., Zaripov, R.G., Osipov, P.P. et al. Wave Dynamics of Gas Suspensions and Individual Particles during Resonance Oscillations. High Temp 59, 384–404 (2021). https://doi.org/10.1134/S0018151X21030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21030056

Navigation