Skip to main content
Log in

Analytical Conditions for Optimality in Inverse Problems of Heat Conduction

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The solution of the inverse problem of technological physics is considered as a problem of the optimal control of an object with distributed parameters based on the Pontryagin maximum principle for an infinite-dimensional object formulated as necessary optimality conditions. The inverse problem of heat conduction is formulated in the uniform metric of estimation of the error in the description of the state function of the studied object and is reduced to the problem of the optimal control of an infinite-dimensional object with an integral quality functional and an extended state vector, for which the nature of the optimal control action is established with the Pontryagin maximum principle. The maximum principle method, which takes into account the relations that ensure that the solution belongs to a given compact set, makes it possible to obtain a parametric representation of the identified lumped or spatially distributed characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Butkovskii, A.G., Teoriya optimal’nogo upravleniya sistemami s raspredelennymi parametrami (The Theory of Optimal Control of Systems with Distributed Parameters), Moscow: Nauka, 1965.

  2. Butkovskii, A.G., Metody upravleniya sistemami s raspredelennymi parametrami (Methods for Controlling Systems with Distributed Parameters), Moscow: Nauka, 1975.

  3. Butkovskii, A.G., Malyi, S.A., and Andreev, Yu.N., Optimal’noe upravlenie nagrevom metalla (Optimal Control of Metal Heating), Moscow: Metallurgiya, 1972.

  4. Egorov, Yu.V., Mat. Sb., 1964, vol. 64(106), no. 1, p. 709.

  5. Panasyuk, V.I., Kovalevskii, V.B., and Polityko, E.D., Optimal’noe upravlenie v tekhnicheskikh sistemakh (Optimal Control in Technical Systems), Minsk: Nauka Tekhnika, 1990.

  6. Fel’dbaum, A.A. and Butkovskii, A.G., Metody teorii avtomaticheskogo upravleniya (Methods of the Theory of Automatic Control), Moscow: Nauka, 1971.

  7. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., and Mishchenko, E.F., Matematicheskaya teoriya optimal’nykh protsessov (Mathematical Theory of Optimal Processes), Moscow: Nauka, 1983.

  8. Rapoport, E.Ya., Optimizatsiya protsessov induktsionnogo nagreva metalla (Optimization of Processes of Induction Heating of Metal), Moscow: Metallurgiya, 1993.

  9. Rapoport, E.Ya., Optimal’noe upravlenie sistemami s raspredelennymi parametrami (Optimal Control of Distributed Parameter Systems), Moscow: Vysshaya Shkola, 2009.

  10. Rapoport, E.Ya., Al’ternansnyi metod v prikladnykh zadachakh optimizatsii (Alternance Method in Applied Optimization Problems), Moscow: Nauka, 2000.

  11. Rapoport, E.Ya. and Pleshivtseva, Yu.E., Optimal’noe upravlenie temperaturnymi rezhimami induktsionnogo nagreva (Optimal Temperature Control of Induction Heating), Moscow: Nauka, 2012.

  12. Alifanov, O.M., Identifikatsiya protsessov teploobmena letatel’nykh apparatov (Identification of Heat Transfer Processes in Aircraft), Moscow: Mashinostroenie, 1979.

  13. Tikhonov, A.N., Dokl. Akad. Nauk SSSR, 1943, vol. 39, no. 5, p. 195.

    Google Scholar 

  14. Diligenskaya, A.N. and Rapoport, E.Ya., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 5, p. 1126.

    Article  Google Scholar 

  15. Diligenskaya, A.N. and Rapoport, E.Ya., J. Eng. Phys. Thermophys., 2016, vol. 89, no. 4, p. 1008.

    Article  Google Scholar 

  16. Diligenskaya, A.N., High Temp., 2018, vol. 56, no. 3, p. 382.

    Article  Google Scholar 

  17. Rapoport, E.Ya., Strukturnoe modelirovanie ob”ektov i sistem upravleniya s raspredelennymi parametrami (Structural Modeling of Objects and Control Systems with Distributed Parameters), Moscow: Vysshaya Shkola, 2003.

  18. Pervozvanskii, A.A., Kurs teorii avtomaticheskogo upravleniya (Automatic Control Theory), St. Petersburg: Lan’, 2015.

  19. Tsirlin, A.M., Balakirev, V.S., and Dudnikov, E.G., Variatsionnye metody optimizatsii upravlyaemykh ob”ektov (Variational Methods of Optimization of Controlled Objects), Moscow: Energiya, 1976.

  20. Ivanov, V.A. and Faldin, N.V., Teoriya optimal’nykh sistem avtomaticheskogo upravleniya (Theory of Optimal Automatic Control Systems), Moscow: Nauka, 1981.

  21. Egorov, Yu.V., in Matematika na sluzhbe inzhenera. Osnovy teorii optimal’nogo upravleniya (Mathematics at the Service of an Engineer: Fundamentals of the Theory of Optimal Control), Moscow: Znanie, 1973, p. 187.

  22. Rapoport, E.Ya. and Pleshivtseva, Yu.E., Izv. Ross. Akad. Nauk, Energ., 2002, no. 5, p. 144.

Download references

Funding

This work was carried out with financial support from the Ministry of Education and Science of the Russian Federation within the framework of the design part of state assignment no. 0778-2020-0005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Diligenskaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diligenskaya, A.N., Rapoport, E.Y. Analytical Conditions for Optimality in Inverse Problems of Heat Conduction. High Temp 59, 292–301 (2021). https://doi.org/10.1134/S0018151X21030032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21030032

Navigation