Abstract
Mathematical modeling of spectral-kinetic, thermal, and electrophysical characteristics, which are difficult to determine experimentally, has been carried out based on the available experimental data for a promising class of the latest high-temperature composite materials consisting of mullite−corundum fibers. The model based on the concept of a representative element makes it possible to take into account not only the structural regularities of the materials and the thermal and electrical properties of its constituents, but also the features (in particular, anisotropy) of radiation in their volume and a wide range of external conditions. After the model is adjusted to the experimental data (thermophysical or spectral), it is possible to calculate the necessary characteristics of materials as a whole and to study the physical processes in heterogeneous, highly porous structures on different spatial and temporal scales. In this study, the model was adjusted to the published results of a thermophysical experiment, which made it possible to determine over a wide temperature range the key parameters to take into account cooperative effects when the fragments of the material interact with electromagnetic radiation. New, important data on the thermal conductivity of materials and its conductive and radiative components, heat capacity, electrical resistivity, and dielectric permittivity have been obtained. A study on those external conditions that make experimentation substantially difficult has been carried out, and specific recommendations regarding the optimization of the properties of the materials are given. The results of the work clearly demonstrate the effectiveness of mathematical materials science as a tool that significantly expands the capabilities of experimental methods.
This is a preview of subscription content, access via your institution.







REFERENCES
Kablov, E.A., Shchetanov, B.V., Ivakhnenko, Yu.A., and Balinova, Yu.A., Aviats. Mater. Tekhnol., 2005, no. 2, p. 3.
Grashchenkov, D.V., Balinova, Yu.A., and Tinyakova, E.V., Glass Ceram., 2012, vol. 69, p. 130.
Kablov, E.N., Babashov, V.G., Butakov, V.V., Lugovoi, A.A., Bespalov, A.S., and Varrik, N.M., RF Patent 2553870, 2015.
Babashov, V.G. and Varrik, N.M., Tr. Vseross. Inst. Aviats. Mater., 2015, no. 1, p. 3.
Kablov, E.N., Shchetanov, B.V., Babashov, V.G., and Lugovoi, A.A., RF Patent (Utility Model) 156904, 2015.
Alifanov, O.M. and Cherepanov, V.V., Metody issledovaniya i prognozirovaniya svoistv vysokoporistykh teplozashchitnykh materialov (Methods for Research and Prediction of the Properties of Highly Porous Heat-Shielding Materials), Moscow: Mosk. Aviats. Inst., 2014.
Sampson, W.W., Modelling Stochastic Fibrous Materials with Mathematica, Chemical Vapor Deposition, London: Springer, 2009.
Alifanov, O.M. and Cherepanov, V.V., High Temp., 2009, vol. 47, no. 3, p. 438.
Tahir, M.A., Tafreshi, H.V., Hosseini, S.A., and Pourdeyhimi, B., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 4629.
Daryabeigi, K., Cunnington, G.R., and Knutson, J.R., J. Thermophys. Heat Transfer, 2011, vol. 25, p. 536.
Liu, S., Chen, W., and Zhang, Y., Appl. Acoust., 2014, vol. 76, p. 319.
Palakurthi, N.K., Konangi, S., Ghia, U., and Comer, K., Int. J. Multiphase Flow, 2015, p. 48.
Bohren, C. and Huffman, D., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.
Toropov, N.A., Diagrammy sostoyaniya silikatnykh sistem. Spravochnik (Diagrams of State of Silicate Systems: Handbook), vol. 4: Troinye okisnye sistemy (Ternary Oxide Systems), Leningrad: Nauka, 1974.
Babashov, V.G., Cand. Sci. (Eng.) Dissertation, Moscow: All-Russ. Inst. Aviat. Mater., 2015.
Svoistva individual’nykh veshchestv. Spravochnik (Properties of Individual Substances: Handbook), 4 vols., Glushko, V.P., Ed., Moscow: Nauka, 1981, vol. 3, book 2.
Hildmann, B. and Schneider, H., J. Am. Ceram. Soc., 2004, vol. 87, p. 227.
Materials Science and Engineering Handbook, Shackelford, J.F. and Alexander, W., Eds., Boca Raton: CRC, 2001, 3rd ed.
Querry, M.R., Optical Constants: U.S. Army Chemical Research, Development, and Engineering Center Technical Report CRDC-CR-85034, Aberdeen Proving Ground, MD, 1985.
Hagemann, H.-J., Gudat, W., and Kunz, C., J. Opt. Soc. Am., 1975, vol. 65, p. 742.
Leko, V.K. and Mazurin, O.V., Svoistva kvartsevogo stekla (Quartz Glass Properties), Leningrad: Nauka, 1985.
Svoistva individual’nykh veshchestv. Spravochnik (Properties of Individual Substances: Handbook), 4 vols., Glushko, V.P., Ed., Moscow: Nauka, 1979, vol. 2, book 2.
Rodríguez-de Marcos, L.V., Larruquert, J.I., Méndez, J.A., and Aznárez, J.A., Opt. Matter. Express, 2016, vol. 6, p. 3622.
Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmuller, M., Fedosenko, O., Mochulik, S., Aleksandrova, A., Monastyrsyi, G., Florez, Y., and Masslenik, W.T., Appl. Opt., 2012, vol. 51, p. 6789.
Popova, S., Tolstykh, T., and Vorobev, V., Opt. Spectrosc., 1972, vol. 33, p. 444.
Kitamura, R., Pilon, L., and Jonasz, M., Appl. Opt., 2007, vol. 33, p. 8118.
Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermophysical Properties of Gases and Liquids), Moscow: Nauka, 1972.
Mironov, R.A., Zabezhailov, M.O., Rusin, M.Yu., Cherepanov, V.V., and Borodai, S.P., High Temp., 2018, vol. 56, no. 1, p. 44.
Cherepanov, V.V., Shchurik, A.G., and Mironov, R.A., Opt. Spectrosc., 2020, vol. 128, no. 4, p. 536.
Alifanov, O.M., Cherepanov, V.V., Shchurik, A.G., and Mironov, R.A., J. Eng. Phys. Thermophys., 2020, vol. 93, no. 3, p. 710.
Mironov, R.A., Zababezhailov, M.O., Cherepanov, V.V., and Rusin, M.Yu., Infrared Phys. Technol., 2019, vol. 102, 103038.
Babashov, V.G., Varrik, N.M., and Karaseva, T.A., Tr. Vseross. Inst. Aviats. Mater., 2019, vol. 78, no. 6, p. 32.
Funding
This work was supported by the Russian Foundation for Basic Research (grant no. 20-08-00465).
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by E. Chernokozhin
Rights and permissions
About this article
Cite this article
Cherepanov, V.V. Modeling and Optimization of Properties of Domestic Mullite–Corundum Composites. High Temp 59, 198–206 (2021). https://doi.org/10.1134/S0018151X21030019
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0018151X21030019