Skip to main content

Modeling and Optimization of Properties of Domestic Mullite–Corundum Composites


Mathematical modeling of spectral-kinetic, thermal, and electrophysical characteristics, which are difficult to determine experimentally, has been carried out based on the available experimental data for a promising class of the latest high-temperature composite materials consisting of mullite−corundum fibers. The model based on the concept of a representative element makes it possible to take into account not only the structural regularities of the materials and the thermal and electrical properties of its constituents, but also the features (in particular, anisotropy) of radiation in their volume and a wide range of external conditions. After the model is adjusted to the experimental data (thermophysical or spectral), it is possible to calculate the necessary characteristics of materials as a whole and to study the physical processes in heterogeneous, highly porous structures on different spatial and temporal scales. In this study, the model was adjusted to the published results of a thermophysical experiment, which made it possible to determine over a wide temperature range the key parameters to take into account cooperative effects when the fragments of the material interact with electromagnetic radiation. New, important data on the thermal conductivity of materials and its conductive and radiative components, heat capacity, electrical resistivity, and dielectric permittivity have been obtained. A study on those external conditions that make experimentation substantially difficult has been carried out, and specific recommendations regarding the optimization of the properties of the materials are given. The results of the work clearly demonstrate the effectiveness of mathematical materials science as a tool that significantly expands the capabilities of experimental methods.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. Kablov, E.A., Shchetanov, B.V., Ivakhnenko, Yu.A., and Balinova, Yu.A., Aviats. Mater. Tekhnol., 2005, no. 2, p. 3.

  2. Grashchenkov, D.V., Balinova, Yu.A., and Tinyakova, E.V., Glass Ceram., 2012, vol. 69, p. 130.

    Article  Google Scholar 

  3. Kablov, E.N., Babashov, V.G., Butakov, V.V., Lugovoi, A.A., Bespalov, A.S., and Varrik, N.M., RF Patent 2553870, 2015.

  4. Babashov, V.G. and Varrik, N.M., Tr. Vseross. Inst. Aviats. Mater., 2015, no. 1, p. 3.

  5. Kablov, E.N., Shchetanov, B.V., Babashov, V.G., and Lugovoi, A.A., RF Patent (Utility Model) 156904, 2015.

  6. Alifanov, O.M. and Cherepanov, V.V., Metody issledovaniya i prognozirovaniya svoistv vysokoporistykh teplozashchitnykh materialov (Methods for Research and Prediction of the Properties of Highly Porous Heat-Shielding Materials), Moscow: Mosk. Aviats. Inst., 2014.

  7. Sampson, W.W., Modelling Stochastic Fibrous Materials with Mathematica, Chemical Vapor Deposition, London: Springer, 2009.

    Book  Google Scholar 

  8. Alifanov, O.M. and Cherepanov, V.V., High Temp., 2009, vol. 47, no. 3, p. 438.

    Article  Google Scholar 

  9. Tahir, M.A., Tafreshi, H.V., Hosseini, S.A., and Pourdeyhimi, B., Int. J. Heat Mass Transfer, 2010, vol. 53, p. 4629.

    Article  Google Scholar 

  10. Daryabeigi, K., Cunnington, G.R., and Knutson, J.R., J. Thermophys. Heat Transfer, 2011, vol. 25, p. 536.

    Article  Google Scholar 

  11. Liu, S., Chen, W., and Zhang, Y., Appl. Acoust., 2014, vol. 76, p. 319.

    Article  Google Scholar 

  12. Palakurthi, N.K., Konangi, S., Ghia, U., and Comer, K., Int. J. Multiphase Flow, 2015, p. 48.

  13. Bohren, C. and Huffman, D., Absorption and Scattering of Light by Small Particles, New York: Wiley, 1983.

    Google Scholar 

  14. Toropov, N.A., Diagrammy sostoyaniya silikatnykh sistem. Spravochnik (Diagrams of State of Silicate Systems: Handbook), vol. 4: Troinye okisnye sistemy (Ternary Oxide Systems), Leningrad: Nauka, 1974.

  15. Babashov, V.G., Cand. Sci. (Eng.) Dissertation, Moscow: All-Russ. Inst. Aviat. Mater., 2015.

  16. Svoistva individual’nykh veshchestv. Spravochnik (Properties of Individual Substances: Handbook), 4 vols., Glushko, V.P., Ed., Moscow: Nauka, 1981, vol. 3, book 2.

  17. Hildmann, B. and Schneider, H., J. Am. Ceram. Soc., 2004, vol. 87, p. 227.

    Article  Google Scholar 

  18. Materials Science and Engineering Handbook, Shackelford, J.F. and Alexander, W., Eds., Boca Raton: CRC, 2001, 3rd ed.

    Google Scholar 

  19. Querry, M.R., Optical Constants: U.S. Army Chemical Research, Development, and Engineering Center Technical Report CRDC-CR-85034, Aberdeen Proving Ground, MD, 1985.

  20. Hagemann, H.-J., Gudat, W., and Kunz, C., J. Opt. Soc. Am., 1975, vol. 65, p. 742.

    Article  ADS  Google Scholar 

  21. Leko, V.K. and Mazurin, O.V., Svoistva kvartsevogo stekla (Quartz Glass Properties), Leningrad: Nauka, 1985.

  22. Svoistva individual’nykh veshchestv. Spravochnik (Properties of Individual Substances: Handbook), 4 vols., Glushko, V.P., Ed., Moscow: Nauka, 1979, vol. 2, book 2.

  23. Rodríguez-de Marcos, L.V., Larruquert, J.I., Méndez, J.A., and Aznárez, J.A., Opt. Matter. Express, 2016, vol. 6, p. 3622.

    Article  ADS  Google Scholar 

  24. Kischkat, J., Peters, S., Gruska, B., Semtsiv, M., Chashnikova, M., Klinkmuller, M., Fedosenko, O., Mochulik, S., Aleksandrova, A., Monastyrsyi, G., Florez, Y., and Masslenik, W.T., Appl. Opt., 2012, vol. 51, p. 6789.

    Article  ADS  Google Scholar 

  25. Popova, S., Tolstykh, T., and Vorobev, V., Opt. Spectrosc., 1972, vol. 33, p. 444.

    Google Scholar 

  26. Kitamura, R., Pilon, L., and Jonasz, M., Appl. Opt., 2007, vol. 33, p. 8118.

    Article  ADS  Google Scholar 

  27. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermophysical Properties of Gases and Liquids), Moscow: Nauka, 1972.

  28. Mironov, R.A., Zabezhailov, M.O., Rusin, M.Yu., Cherepanov, V.V., and Borodai, S.P., High Temp., 2018, vol. 56, no. 1, p. 44.

    Article  Google Scholar 

  29. Cherepanov, V.V., Shchurik, A.G., and Mironov, R.A., Opt. Spectrosc., 2020, vol. 128, no. 4, p. 536.

    Article  ADS  Google Scholar 

  30. Alifanov, O.M., Cherepanov, V.V., Shchurik, A.G., and Mironov, R.A., J. Eng. Phys. Thermophys., 2020, vol. 93, no. 3, p. 710.

    Article  Google Scholar 

  31. Mironov, R.A., Zababezhailov, M.O., Cherepanov, V.V., and Rusin, M.Yu., Infrared Phys. Technol., 2019, vol. 102, 103038.

    Article  Google Scholar 

  32. Babashov, V.G., Varrik, N.M., and Karaseva, T.A., Tr. Vseross. Inst. Aviats. Mater., 2019, vol. 78, no. 6, p. 32.

    Google Scholar 

Download references


This work was supported by the Russian Foundation for Basic Research (grant no. 20-08-00465).

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. V. Cherepanov.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cherepanov, V.V. Modeling and Optimization of Properties of Domestic Mullite–Corundum Composites. High Temp 59, 198–206 (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: