Abstract
In experiments on the controlled pulsed heating of a substance, the heat transfer to aqueous glycols and propylene glycols solutions was compared in the full range of compositions. The research was conducted in the field of stable and superheated states. The used mode involved the thermostabilization of a probe heater when a specified temperature was reached. The typical heating duration was 10 ms. The general feasibility of the measurement of primary quantities in aqueous solutions superheated with respect to the liquid–vapor equilibrium temperature is shown. In test experiments with an aqueous solution of PPG-425 polypropylene glycol, the measurements were carried out with short-term superheating relative to the liquid–liquid equilibrium temperature, as well as in a certain range of compositions relative to the temperature of the diffusion spinodal of the solution.
This is a preview of subscription content, access via your institution.











REFERENCES
Grigull, U. and Sandner, H., Heat Conduction, Berlin: Springer, 1984.
Stankus, S.V., Khairulin, R.A., Martynets, V.G., and Bezverkhii, P.P., High Temp., 2013, vol. 51, no. 5, p. 695.
Kravchun, S.N. and Lipaev, A.A., Metod periodicheskogo nagreva v eksperimental’noi teplofizike (Periodic Heating Method in Experimental Thermal Physics), Kazan: Kazan. Gos. Univ., 2006.
Skripov, P.V. and Skripov, A.P., Int. J. Thermophys., 2010, vol. 31, nos. 4–5, p. 816.
Spirin, G.G., J. Eng. Phys., 1978, vol. 35, p. 1051.
Mulyukov, R.R. and Pavlov, P.A., Teplofiz. Vys. Temp., 1982, vol. 20, no. 1, p. 49.
Bulanov, N.V., Nikitin, E.D., and Skripov, V.P., J. Eng. Phys., 1974, vol. 26, p. 136.
Gasanov, B.M., High Temp., 2018, vol. 56, no. 4, p. 565.
Yagov, V.V., Zabirov, A.R., Kaban’kov, O.N., and Minko, M.V., Int. J. Heat Mass Transfer, 2017, vol. 110, p. 219.
Volosnikov, D.V., Efremov, V.P., Skripov, P.V., Starostin, A.A., and Shishkin, A.V., High Temp., 2006, vol. 44, no. 3, p. 463.
Chudnovskii, V.M., Maior, A.Yu., Yusupov, V.I., and Zhukov, S.A., High Temp., 2019, vol. 57, no. 4, p. 531.
Reshetnikov, A.V., Mazheiko, N.A., Skripov, V.P., Skokov, V.N., and Koverda, V.P., High Temp., 2002, vol. 40, no. 5, p. 701.
Vinogradov, V.E. and Pavlov, P.A., High Temp., 2016, vol. 54, no. 3, p. 338.
Phylippov, L.P., Nefedov, S.N., and Kravchoon, S.N., Int. J. Thermophys., 1980, vol. 1, no. 2, p. 141.
Starostin, A.A., Skripov, P.V., and Altinbaev, A.R., Int. J. Thermophys., 1999, vol. 20, no. 3, p. 953.
Volosnikov, D.V., Sivtsov, A.V., Skripov, P.V., and Starostin, A.A., Instrum. Exp. Tech., 2000, vol. 43, no. 1, p. 134.
Skripov, P.V., Starostin, A.A., and Volosnikov, D.V., Dokl. Phys., 2003, vol. 48, p. 228.
Sun, T. and Teja, A.S.J., J. Chem. Eng. Data, 2003, vol. 48, p. 198.
Skripov, V.P., and Faizullin, M.Z., Fazovye perekhody kristall–zhidkost’–par i termodinamicheskoe podobie (Crystal–Liquid-Vapor Phase Transitions and Thermodynamic Similarit) Moscow: Fizmatlit, 2003, part 4.3.
Skripov, V.P. and Skripov, A.V., Sov. Phys. Usp., 1979, vol. 22, p. 389.
Volosnikov, D.V., Povolotskiy, I.I., Igolnikov, A.A., and Galkin, D.A., J. Phys.: Conf. Ser., 2018, vol. 1105, 012153.
Rutin, S.B., Igolnikov, A.A., and Skripov, P.V., J. Eng. Thermophys., 2020, vol. 29, no. 1, p. 67.
Rutin, S.B., Volosnikov, D.V., and Skripov, P.V., Int. J. Heat Mass Transfer, 2015, vol. 91, p. 1.
Lukianov, K.V., Kotov, A.N., Starostin, A.A., and Skripov, P.V., Interfacial Phenom. Heat Transfer, 2019, vol. 7, p. 283.
Afanas’ev, S.Yu., Zhukov, S.A., and Echmaev, S.B., Teplofiz. Vys. Temp., 1996, vol. 34, no. 4, p. 583.
Echmaev, S.B. and Zhukov, S.A., High Temp., 2013, vol. 51, no. 6, p. 876.
Volosnikov, D.V., Ryutin, V.S., Skripov, P.V., Starostin, A.A., and Shishkin, A.V., in Metastabil’nye sostoyaniya i fazovye perekhody (Metastable States and Phase Transitions), Yekaterinburg: Ur. Otd. Ross. Akad. Nauk, 2001, no. 5, p. 59.
Ralph, D.G. and Teja, A.S.J., J. Chem. Eng. Data, 1990, vol. 35, p. 117.
Kozulin, I.A. and Kuznetsov, V.V., J. Phys.: Conf. Ser., 2019, vol. 1359, 012052.
Gurashkin, A.L., Starostin, A.A., Ermakov, G.V., and Skripov, P.V., J. Chem. Phys., 2012, vol. 136, 021102.
Filippov, L.P. and Kravchun, S.N., Zh. Fiz. Khim., 1982, vol. 56, no. 11, p. 2753.
Firman, P. and Kahlweit, M., Colloid Polym. Sci., 1986, vol. 264, no. 11, p. 936.
Igolnikov, A.A., Rutin, S.B., and Skripov, P.V., AIP Conf. Proc., 2019, vol. 2174, 020104.
Ullmann, A., Poesio, P., and Brauner, N., Interfacial Phenom. Heat Transfer, 2015, vol. 3, p. 41.
Funding
The reported study was funded by RFBR, project number 19-38-90075.
Author information
Authors and Affiliations
Corresponding author
Additional information
Translated by E. Chernokozhin
Rights and permissions
About this article
Cite this article
Volosnikov, D.V., Povolotsky, I.I., Starostin, A.A. et al. Heat Transfer to Aqueous Glycol Solutions in Pulse-Superheated States. High Temp 59, 283–291 (2021). https://doi.org/10.1134/S0018151X21020152
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0018151X21020152