Skip to main content
Log in

Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified SurfacesA Review

  • REVIEW
  • Published:
High Temperature Aims and scope

Abstract

This work reviews the modern research on the intensification of heat transfer with the use of advanced passive or semipassive methods of enhancement. A brief historical introduction is given. The review includes research on the intensification of boiling and evaporation heat transfer with commercially available surfaces, as well as promising developments obtained with various modification methods, including mechanical (deformational cutting, application of mesh coatings, etc.) and more resource-intensive modern methods and their combinations, which are used in the creation of multiscale, biphilic, and other micro- and nanostructured surfaces and coatings. It is demonstrated that both – the known mechanical processing methods and advanced methods of surface structuring enable excellent results for heat-transfer enhancement. Attention is primarily given to studies that use relatively simple and readily implemented methods of surface modification that can potentially be used in modern heat- transfer equipment today.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.

Similar content being viewed by others

Notes

  1. Strictly speaking, the first study of heat-transfer intensification is likely to be considered the classic work of J.P. Joule of 1861, which studied the condensation of steam on the outer surface of a pipe with a wire coil on it.

  2. A pump is required to keep the necessary liquid level in the constant level tank.

  3. The basic method for the creation of commercial enhanced tubes is to corrugate their outer surface with a set of knurling rollers (called radial or helical rolling). The world leading manufacturers of corrugated tubes are Salem Tube, Tulsa Fin Tube, Wolverine Tube Inc., Fintube (United States), Wieland Thermal Solutions (Germany), Profins, AESSEAL (United Kingdom), Hitachi (Japan), etc. In Russia, the equipment for the rolling of ribs in the tube surface is developed and designed by JSC AKhK Tselikov VNIIMETMASH).

  4. This review does not consider in detail the numerous studies on the application of enhanced tubes (which often also have a structure on the inner surface) in tubular heat exchangers. A detailed review of such studies and the existing correlations for the calculation of the HTC for various modes of irrigation of a tube bundle is the subject of separate review and analytical papers.

  5. The classification into simple and complex machining methods (and the corresponding types of surfaces) adopted in the review is somewhat arbitrary. For example, surfaces with semiclosed pores fabricated via DCM have a strong effect on nucleate boiling at the microscale level, as do the multilayer gradient meshes on the surface, which were discussed above.

REFERENCES

  1. Surtaev, A., Serdyukov, V., Zhou, J., Pavlenko, A., and Tumanov, V., Int. J. Heat Mass Transfer, 2018, vol. 126, p. 97.

    Article  Google Scholar 

  2. Zubkov, N.N. and Bityutskaya, Yu.L., RF Patent 2679815, 2019.

  3. Jaikumar, A., and Kandlikar, S.G., Int. J. Heat Mass Transfer, 2016, vol. 95, p. 795.

    Article  Google Scholar 

  4. Jakob, M., Heat Transfer, New York: Wiley, 1949.

    Google Scholar 

  5. Webb, R.L., J. Heat Transfer, 2004, vol. 126, no. 6, p. 1051.

    Article  Google Scholar 

  6. Tolubinskii, V.I., Tr. Inst. Teploenerg., 1950, no. 2, p. 19.

  7. Labuntsov, D.A., Izv. Akad. Nauk SSSR, Energ. Transp., 1963, no. 1, p. 58.

  8. Danilova, G.N., Tr. TsKTI, 1965, no. 57, p. 56.

  9. Danilova, G.N. and Kupriyanova, A.V., Kholod. Tekh., 1967, no. 11, p. 15.

  10. Danilova, G.N. and Kupriyanova, A.V., Kholod. Tekh., 1971, no. 6, p. 39.

  11. Povolotskaya, N.M., Issledovanie teploobmena pri kipenii freona-502 v puchke trub (Investigation of Heat Transfer during Boiling of Freon-502 in a Tube Bundle), Moscow: VNIKhI, 1969.

  12. Kupriyanova, A.V., Kholod. Tekh., 1970, no. 11, p. 40.

  13. Gogonin, I.I., Kholod. Tekh. Tekhnol., 1970, no. 3, p. 24.

  14. Yagov, V.V. and Labuntsov, D.A., J. Eng. Phys., 1971, vol. 20, no. 6, p. 693.

    Article  Google Scholar 

  15. Zuber, N., Trans. Am. Soc. Mech. Eng., 1958, vol. 80, p. 711.

    Google Scholar 

  16. Young, R.K. and Hummel, R.L., Chem. Eng. Prog., 1964, vol. 60, no. 7, p. 53.

    Google Scholar 

  17. Bergles, A.E.and Rohsenow, W.M., ASME J. Heat Transfer, 1964, vol. 86, p. 365.

    Article  Google Scholar 

  18. Danilova, G.N., Bogdanov, S.N., Ivanov, O.P., and Mednikova, N.M., Teploobmennye apparaty kholodil’nykh ustanovok (Heat Exchangers of Refrigeration Units) Leningrad: Mashinostroenie, 1973.

  19. Jacob, M. and Linke, W., Phys. Z., 1935, vol. 36, no. 2, p. 267.

    Google Scholar 

  20. Westwater, J.W., Am. Sci., 1959, vol. 47, no. 3, p. 427.

    Google Scholar 

  21. Clark, H.B., Strenge, P.S., and Westwater, J.W., Chem. Eng. Prog. Symp. Ser., 1959, vol. 55, no. 29, p. 103.

    Google Scholar 

  22. Kurihara, H.M. and Myers, J.E., AIChE J., 1960, vol. 6, p. 83.

    Article  Google Scholar 

  23. Antuf’ev, V.M. and Gusev, E.K., Teploenergetika, 1968, no. 7, p. 31.

  24. Dyundin, V.A., Kholod. Tekh., 1969, no. 11, p. 16.

  25. Danilova, G.N. and Bel’skii, V.K., Kholod. Tekh., 1970, no. 3, p. 24.

  26. Nikolaev, G.P. and Tokalov, Yu.K., J. Eng. Phys., 1974, vol. 26, no. 1, p. 1.

    Article  Google Scholar 

  27. Kuzma-Kichta, Yu.A., Moskvin, V.N., and Sorokin, D.N., Teploenergetika, 1982, no. 3, p. 53.

  28. Gogolin, A.A., Danilova, G.N., Azarskov, V.M., and Mednikova, N.M., Intensifikatsiya teploobmena v isparitelyakh kholodil’nykh mashin (Heat Transfer Intensification in Refrigerating Machine Evaporators), Gogolin, A.A., Ed., Moscow: Izd. Legkoi Pishch. Prom-ti, 1982.

    Google Scholar 

  29. Vilemas, Yu.V., Voronin, G.I., Dzyubenko, B.V., and Dreitser, G.A., Intensifikatsiya teploobmena. Uspekhi teploperedachi (Heat Transfer Intensification. Heat Transfer Advances), Zhukauskas, A.A. and Kalinin, E.K., Eds., Vil’nyus: Mosklas, 1988, vol. 2.

  30. Kalinin, E.K., Dreitser, G.A., Kopp, I.Z., and Myakochin, A.S., Effektivnye poverkhnosti teploobmena (Effective Heat Transfer Surfaces), Moscow: Energoatomizdat, 1998.

  31. Thome, J.R., Enhanced Boiling Heat Transfer, New York: Hemisphere, 1990.

    Google Scholar 

  32. Webb, R.L., Principles of Enhanced Heat Transfer, New York: Wiley, 1994.

    Google Scholar 

  33. Bergles, A.E., Techniques to enhance heat transfer, in Handbook of Heat Transfer, Rohsenow, W.M., Hartnett, J.P., and Cho, Y.I., Eds., New York: McGraw-Hill, 1998.

    Google Scholar 

  34. Bergles, A.E., Jensen, M.K., and Shome, B., Bibliography on enhancement of convective heat and mass transfer, Report HTL-23, New York: Rensselaer Polytech. Inst., 1995.

  35. Bejan, A. and Kraus, A.D., Heat Transfer Handbook, New York: Wiley, 2003, vol. 1.

    Google Scholar 

  36. Thome, J.R., Engineering Data Book III, Wolverine Tube, 2004.

    Google Scholar 

  37. Webb, R.L. and Donald, Q., J. Heat Transfer, 2004, vol. 126, no. 6, p. 1051.

    Article  Google Scholar 

  38. Ribatski, G. and Jacobi, A.M., Int. J. Refrig., 2005, vol. 28, no. 5, p. 635.

    Article  Google Scholar 

  39. Dzyubenko, B.V., Kuzma-Kichta, Yu.A., Leont’ev, A.I., Fedik, I.I., and Kholpanov, L.P., Intensifikatsiya teplo- i massoobmena na makro-, mikro- i nanomasshtabakh (Intensification of Heat and Mass Transfer at Macro-, Micro-, and Nanoscale), Moscow: TsNIIAtominform, 2008.

  40. Popov, I.A., Makhyanov, Kh.M., and Gureev, V.M., Fizicheskie osnovy i promyshlennoe primenenie intensifikatsii teploobmena (Physical Foundations and Industrial Applications of Heat Transfer Intensification), Kazan: Tsentr Innovats. Tekhnol., 2009.

  41. Ovsyannik, A.V., Modelirovanie protsessov teploobmena pri kipenii zhidkostei (Simulation of Heat Transfer Processes during Boiling of Liquids), Gomel: Gomel. Gos. Tekh. Univ. im. P.O. Sukhogo, 2012.

  42. Attinger, D., Frankiewicz, C., Betz, A.R., Schut-zius, T.M., Ganguly, R., Das, A., and Megaridis, C.M., MRS Energy Sustainability. 2014, vol. 1, p. 4.

    Article  Google Scholar 

  43. Bhavnani, S., Narayanan, V., Qu, W., Jensen, M., Kandlikar, S., Kim, J., and Thome, J., Nanoscale Microscale Thermophys. Eng., 2014, vol. 18, no. 3, p. 197.

    Article  ADS  Google Scholar 

  44. McCarthy, M., Gerasopoulos, K., Maroo, S.C., and Hart, A.J., Nanoscale Microscale Thermophys. Eng., 2014, vol. 18, p. 288.

    Article  ADS  Google Scholar 

  45. Kim, D.E., Yu, D.I., Jerng, D.W., Kim, M.H., and Ahn, H.S., Exp. Therm. Fluid Sci., 2015, vol. 66, p. 173.

    Article  Google Scholar 

  46. Shojaeian, M. and Kosar, A., Exp. Therm. Fluid Sci., 2015, vol. 63, p. 45.

    Article  Google Scholar 

  47. Pavlenko, A.N., Pecherkin, N.I., and Volodin, O.A., Teploobmen i krizisnye yavleniya v stekayushchikh plenkakh zhidkosti pri isparenii i kipenii (Heat Transfer and Crisis Phenomena in Falling Liquid Films during Evaporation and Boiling), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2016.

  48. Surtaev, A.S., Serdyukov, V.S., and Pavlenko, A.N., Nanotechnol. Russ., 2016, vol. 11, p. 696.

    Article  Google Scholar 

  49. Gogonin, I.I., Teploobmen pri puzyr’kovom kipenii (Heat Transfer in Nucleate Boiling), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2018.

  50. Liang, G. and Mudawar, I., Int. J. Heat Mass Transfer, 2019, vol. 128, p. 892.

    Article  Google Scholar 

  51. Sirotin, A.G., Dvoiris, A.D., Ignatov, L.N., and Kholodnov, V.A., Gaz. Prom-st., 1976, no. 12, p. 28.

  52. Borishanskaya, A.V., Kholod. Tekh., 1979, no. 12, p. 17.

  53. Sirotin, A.G., in Kipenie i kondensatsiya (Boiling and Condensation), Riga: Nauka, 1984, p. 20.

  54. Vasil’ev, L.L., Ovsyannik, A.V., and Novikov, I.N., Vestn. Gomel. Gos. Tekh. Univ. im. P.O. Sukhogo, 2001, no. 2, p. 3.

  55. Fujie, K., Nakayama, W., Kuwahara, H., and Kakizakci, K., US Patent 4 060 125, 1977.

  56. Saier, M., Kastner, H.W., and Klockler, R.Y., US Patent 4179911, 1979.

  57. Fujikake, J., US Patent 4 216 826, 1980.

  58. Thors, P., Clevinger, N.R., Campbell, B., and Tyler, J.T., US Patent 5 697 430, 1997.

  59. Webb, R.L. and Pais, C., Int. J. Heat Mass Transfer, 1992, vol. 35, no. 8, p. 1893.

    Article  Google Scholar 

  60. Zubkov, N.N. and Ovchinnikov, A.I., EU Patent 0727269, 1996.

  61. Thors, P. and Zoubkov, N., US Patent 7 311 137, 2007.

  62. Thors, P. and Zoubkov, N., US Patent 8 573 022, 2013.

  63. Jung, D., An, K., and Park, J., Int. J. Refrig., 2004, vol. 27, no. 2, p. 202.

    Article  Google Scholar 

  64. Christians, M. and Thome, J.R., Int. J. Refrig., 2012, vol. 35, no. 2, p. 300.

    Article  Google Scholar 

  65. Habert, M. and Thome, J.R., Exp. Heat Transfer, 2010, vol. 23, no. 4, p. 259.

    Article  ADS  Google Scholar 

  66. Chen, T., Appl. Therm. Eng., 2013, vol. 59, nos. 1–2, p. 355.

    Article  Google Scholar 

  67. Li, W., Wu, X.-Y., and Luo, Z., Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 13–14, p. 2990.

    Article  Google Scholar 

  68. Huang, L.-D., Proc. 10th Int. Conf. on Boiling and Condensation Heat Transfer, Nagasaki, Japan, 2018.

  69. Ayub, Z.H. and Bergles, A.E., Waerme- Stoffuebertrag., 1987, vol. 21, p. 209.

  70. Fagerholm, N.E., Ghazanfari, A.R., Kivioja, K., and Järvinen, E., Waerme- Stoffuebertrag., 1987, vol. 21, no. 6, p. 343.

  71. McNeil, D.A., Burnside, B.M., Miller, K.M., and Tarrad, A.H., Appl. Therm. Eng., 2002, no. 2, p. 803.

  72. Roques, J.F. and Thome, J.R., Heat Transfer Eng., 2007, vol. 28, no. 5, p. 398.

    Article  ADS  Google Scholar 

  73. Kim, N.H. and Choi, K.K., Int. J. Heat Mass Transfer, 2001, vol. 44, no. 1, p. 17.

    Article  Google Scholar 

  74. Liu, Z.H. and Yi, J., Exp. Therm. Fluid Sci., 2001, vol. 25, p. 447.

    Article  Google Scholar 

  75. Liu, Z.H. and Yi, J., Appl. Therm. Eng., 2002, vol. 22, no. 1, p. 83.

    Article  Google Scholar 

  76. Zhao, C.Y., Jin, P.H., Ji, W.T., He, Y.L., and Tao, W.Q., Int. J. Refrig., 2017, vol. 75, p. 190.

    Article  Google Scholar 

  77. Jin, P.H., Zhao, C.Y., Ji, W.T., and Tao, W.Q., Appl. Therm. Eng., 2018, vol. 137, p. 739.

    Article  Google Scholar 

  78. Zoubkov, N.N., Ovchinnikov, A.I., and Vasil’ev, S.G., Russ. Eng. Res., 2016, vol. 36, no. 3, p. 209.

    Article  Google Scholar 

  79. Yakomaskin, A.A., Afanasiev, V.N., Zubkov, N.N., and Morskoy, D.N., J. Heat Transfer, 2013, vol. 135, no. 10, 101006.

    Article  Google Scholar 

  80. Bityutskaya, Yu.L., Cand, Sci. (Eng.) Dissertation, Moscow: Bauman Moscow State Tech. Univ., 2019.

  81. Shchelchkov, A.V., Popov, I.A., and Zubkov, N.N., J. Eng. Phys. Thermophys., 2016, vol. 89, no. 5, p. 1152.

    Article  Google Scholar 

  82. Popov, I.A., Shchelchkov, A.V., Gortyshov, Yu.F., and Zubkov, N.N., High Temp., 2017, vol. 55, no. 4, p. 524.

    Article  Google Scholar 

  83. Antanenkova, I.S., Sukhikh, A.A., and Ezhov, E.V., Kholod. Tekh., 2016, no. 10, p. 30.

  84. Volodin, O., Pecherkin, N., Pavlenko, A., and Zubkov, N., Int. J. Heat Mass Transfer, 2020, vol. 155, 119722.

    Article  Google Scholar 

  85. Ayub, Z.H., Pool boiling from GEWA surfaces in water and R-113, Retrospective Theses and Dissertations, 1986, paper 7979. https://doi.org/10.1007/BF01004023

  86. Gogonin, I.I., J. Eng. Phys. Thermophys., 2010, vol. 83, no. 4, 821826.

    Article  Google Scholar 

  87. Pavlenko, A.N. and Lel, V.V., Russ. J. Eng. Thermophys., 1997, vol. 7, nos. 3–4, p. 177.

    Google Scholar 

  88. Popov, I.A., Shchelchkov, A.V., Zubkov, N.N., Lei, R.A., and Gortyshov, Yu.F., Russ. Aeronaut. (Iz VUZ), 2014, no. 4, p. 49.

  89. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., Zubkov, N.N., and Bityutskaya, Yu.L., Interekspo GEO-Sibir’, 2017, vol. 5, no. 1, p. 157.

    Google Scholar 

  90. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.I., Interfacial Phenom. Heat Transfer, 2017, vol. 5, p. 215.

    Article  Google Scholar 

  91. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.I., J. Phys.: Conf. Ser., 2017, vol. 917, no. 1, 012035.

    Google Scholar 

  92. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., Stepanov, K.A., and Zubkov, N.N., Tepl. Protsessy Tekh., 2019, vol. 11, no. 1, p. 16.

    Google Scholar 

  93. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.I., J. Phys.: Conf. Ser., 2019, vol. 1369, no. 1, 012046.

    Google Scholar 

  94. Pavlenko, A.N., Kuznetsov, D.V., Volodin, O.A., and Zubkov, N.N., J. Phys.: Conf. Ser., 2019, vol. 1369, no. 1, 012052.

    Google Scholar 

  95. Stepanov, K., Mukhin, D., and Zubkov, N., J. Eng. Thermophys., 2019, vol. 28, no. 4, p. 529.

    Article  Google Scholar 

  96. Chien, L.H. and Tsai, Y.L., Appl. Therm. Eng., 2011, vol. 31, nos. 17–18, p. 4044.

    Article  ADS  Google Scholar 

  97. Dabek, L., Kapjor, A., and Orman, L.J., AIP Conf. Proc., 2016, vol. 1745, no. 1, 020005.

    Article  Google Scholar 

  98. Zhang, S., Jiang, X., Li, Y., et al., Energy Convers. Manage., 2020, vol. 209, 112665.

    Article  Google Scholar 

  99. Salvagnini, W. and Taqueda, M.A., Ind. Eng. Chem. Res., 2004, vol. 43, no. 21, p. 6832.

    Article  Google Scholar 

  100. Gerlach, D.W. and Joshi, Y.K., Proc. ASME 2005 Int. Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers Digital Collection, 2005, p. 807.

  101. Franco, A., Latrofa, E.M., and Yagov, V.V., Exp. Therm. Fluid Sci., 2006, vol. 30, no. 3, p. 263.

    Article  Google Scholar 

  102. Nishikawa, K., Ito, T., and Tanaka, K., Heat Transfer—Jpn. Res., 1979, vol. 8, no. 2, p. 65.

    Google Scholar 

  103. Rannenberg, M. and Beer, H., Lett. Heat Mass Transfer, 1980, vol. 7, no. 6, p. 425.

    Google Scholar 

  104. Xin, M.D. and Chao, Y.D., Chem. Eng. Commun., 1987, vol. 50, nos. 1–6, p. 185.

    Article  Google Scholar 

  105. Åkesjö, A., Gourdon, M., Vamling, L., Innings, F., and Sasic, S., Int. J. Heat Mass Transfer, 2019, vol. 131, p. 237.

    Article  Google Scholar 

  106. Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Proc. 3rd Int. Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control (IWHT2015), Taipei, 2015, IWHT2015-1049.

  107. Volodin, O.A., Pecherkin, N.I., Pavlenko, A.N., and Zubkov, N.N., Mater. XIV Mezhdun. nauch. kongress. Mezhdun. nauch. konf. “SIBOPTIKA-2018” (Proc. XIV Int. Sci. Congress and Int. Sci. Conf. “SIBOPTICS-2018”), Novosibirsk: Interekspo GEO-Sibir’, 2018, vol. 1, p. 193.

  108. Aviles, M.L., PhD Thesis, Berlin: Univ. Technol., 2007.

  109. Zaitsev, D.V., Aviles, M.L., Auracher, H., and Kabov, O.A., Microgravity Sci. Technol., 2007, vol. 19, nos. 3–4, p. 71.

    Article  ADS  Google Scholar 

  110. Rocha, S.P., Kannengieser, O., Cardoso, E.M., and Passos, J.C., Int. J. Refrig., 2013, vol. 36, no. 2, p. 456.

    Article  Google Scholar 

  111. Berenson, P.J., Int. J. Heat Mass Transfer, 1962, vol. 5, no. 10, p. 985.

    Article  Google Scholar 

  112. Jones, B.J., McHale, J.P., and Garimella, S.V., J. Heat Transfer, 2009, vol. 131, no. 12, 121009.

    Article  Google Scholar 

  113. Kang, M.G., Int. J. Heat Mass Transfer, 2000, vol. 43, no. 22, p. 4073.

    Article  Google Scholar 

  114. Grigor’ev, V.A., Pavlov, Yu.M., and Ametistov, E.V., Kipenie kriogennykh zhidkostei (Boiling Cryogenic Liquids), Moscow: Energiya, 1977.

  115. Kutepov, A.M., Sterman, L.S., and Styushin, N.G., Gidrodinamika i teploobmen pri paroobrazovanii (Hydrodynamics and Heat Transfer during Vaporization), Moscow: Vysshaya Shkola, 1986.

  116. Gogonin, I.I., High Temp., 2006, vol. 44, no. 6, p. 913.

    Article  Google Scholar 

  117. Hosseini, R., Gholaminejad, A., Nabil, M., and Samadinia, M.H., Proc. ASME/JSME 2011 8th Therm. Eng. Joint Conf., American Society of Mechanical Engineers Digital Collection, 2011.

  118. Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T., J. Heat Transfer, 1980, vol. 102, p. 445.

    Article  Google Scholar 

  119. Chien, L.H. and Webb, R.L., Int. J. Heat Mass Transfer, 1998, vol. 41, no. 14, p. 2183.

    Article  Google Scholar 

  120. Jiang, Y.Y., Wang, W.C., Wang, D., and Wang, B.X., Int. J. Heat Mass Transfer, 2001, vol. 44, no. 2, p. 443.

    Article  Google Scholar 

  121. Márkus, A. and Házi, G., Nucl. Eng. Des., 2012, vol. 248, p. 263.

    Article  Google Scholar 

  122. Fujita, Y., in Heat Transfer Enhancement of Heat Exchangers, Dordrecht: Springer, 1999, p. 325.

    Google Scholar 

  123. Gambaryan-Roisman, T. and Stephan, P., Proc. Int. Heat Transfer Conf. Digital Library, Grenoble, 2002, vol. 3. 449.

  124. Lorentz, J.J. and Yung, D., Proc. 5th OTEC Conf., 1978, vol. 3, p. 46.

  125. Rifert, V.G., Podberezny, V.I., Putilin, J.V., Nikitin, J.G., and Barabash, P.A., Desalination, 1989, vol. 74, p. 363.

    Article  Google Scholar 

  126. Putilin, J.V., Podberezny, V.L., and Rifert, V.G., Desalination, 1996, vol. 105, nos. 1–2, p. 165.

    Article  Google Scholar 

  127. Pecherkin, N.I., Pavlenko, A.N., and Volodin, O.A., Int. J. Heat Mass Transfer, 2015, vol. 90, p. 149.

    Article  Google Scholar 

  128. Yagov, V.V., Teploenergetika, 1988, no. 2, p. 4.

  129. Yagov, V.V., Exp. Therm. Fluid Sci., 1998, vol. 2, p. 545.

    Google Scholar 

  130. Ramaswamy, C., Joshi, Y., Nakayama, W., and Johnson, W.B., Int. J. Heat Mass Transfer, 2003, vol. 46, no. 22, p. 4257.

    Article  Google Scholar 

  131. Haider, I. and Webb, R.L., Int. J. Heat Mass Transfer, 1997, vol. 40, no. 15, p. 3675.

    Article  Google Scholar 

  132. Liang, G. and Mudawar, I., Int. J. Heat Mass Transfer, 2018, vol. 117, p. 1352.

    Article  Google Scholar 

  133. Dedov, A.V., Therm. Eng., 2019, vol. 66, no. 12, p. 881.

    Article  Google Scholar 

  134. Khan, S.A., Atieh, M.A., and Koç, M., Energies, 2018, vol. 11, no. 11, p. 3189.

    Article  Google Scholar 

  135. Jaikumar, A. and Kandlikar, S.G., Int. J. Heat Mass Transfer, 2015, vol. 88, p. 652.

    Article  Google Scholar 

  136. Jaikumar, A. and Kandlikar, S.G., Appl. Therm. Eng., 2015, vol. 91, p. 426.

    Article  Google Scholar 

  137. Gheitaghy, A.M., Saffari, H., and Mohebbi, M., Exp. Therm. Fluid Sci., 2016, vol. 76, p. 87.

    Article  Google Scholar 

  138. Akbari, E., Gheitaghy, A.M., Saffari, H., and Hosseinalipour, S.M., Exp. Therm. Fluid Sci., 2017, vol. 82, p. 390.

    Article  Google Scholar 

  139. Bai, L., Zhang, L., Lin, G., and Peterson, G.P., Appl. Phys. Lett., 2016, vol. 108, no. 23, 233901.

    Article  ADS  Google Scholar 

  140. Kim, H., Park, Y., Kim, H., Lee, C., Jerng, D.W., and Kim, D.E., Int. J. Heat Mass Transfer, 2017, vol. 115, p. 439.

    Article  Google Scholar 

  141. Shustov, M.V., Kuzma-Kichta, Yu.A., and Lavrikov, A.V., Therm. Eng., 2017, vol. 64, vol. 4, p. 301.

  142. Kuzma-Kichta, Yu.A., Lavrikov, A.V., Shustov, M.V., Chursin, P.S., Chistyakova, A.V., Zvonarev, Yu.A., Zhukov, V.M., and Vasil’eva, L.T., Therm. Eng., 2014, vol. 61, no. 3, p. 210.

    Article  Google Scholar 

  143. Surtaev, A.S., Pavlenko, A.N., Kalita, V.I., Kuznetsov, D.V., Komlev, D.I., Radyuk, A.A., and Ivannikov, A.Y., Tech. Phys. Lett., 2016, vol. 42, no. 4, p. 391.

    Article  ADS  Google Scholar 

  144. Surtaev, A., Kuznetsov, D., Serdyukov, V., Pavlenko, A., Kalita, V., Komlev, D., Ivannikov, A., and Radyuk, A., Appl. Therm. Eng., 2018, vol. 133, p. 532.

    Article  Google Scholar 

  145. Vasil’ev, N.V., Varaksin, A.Yu., Zeigarnik, Yu.A., and Khodakov, K.A., High Temp., 2017, vol. 55, no. 6, p. 880.

    Article  Google Scholar 

  146. Bessmel’tsev, V.P., Pavlenko, A.N., and Zhukov, V.I., Avtometriya, 2019, vol. 55, no. 6, p. 25.

    Google Scholar 

  147. Bock, B.D., Bucci, M., Markides, C.N., Thome, J.R., and Meyer, J.P., Int. J. Heat Mass Transfer, 2020, vol. 162, 120387.

    Article  Google Scholar 

  148. Young, R.K. and Hummel, R.L., Chem. Eng. Prog., 1964, vol. 60, no. 7, p. 53.

    Google Scholar 

  149. Vachon, R.I. and Nix, G.E., Trans. ASME, Ser. C, 1969, no. 3, p. 73.

  150. Takata, Y., Hidaka, S., Masuda, M., and Ito, T., Int. J. Energy Res., 2003, vol. 27, no. 2, p. 111.

    Article  Google Scholar 

  151. Takata, Y., Hidaka, S., Yamashita, A., and Yamamoto, H., J. Heat Fluid Flow, 2004, vol. 25, no. 2, p. 320.

    Article  Google Scholar 

  152. Takata, Y., Hidaka, S., Cao, J.M., Nakamura, T., Yamamoto, H., Masuda, M., and Ito, T., Energy, 2005, vol. 30, nos. 2–4, p. 209.

    Article  Google Scholar 

  153. Takata, Y., Hidaka, S., and Uraguchi, T., J. Heat Fluid Flow, 2004, vol. 27, no. 8, p. 25.

    Google Scholar 

  154. Jo, H., Ahn, H.S., Kang, S., and Kim, M.H., Int. J. Heat Mass Transfer, 2011, vol. 54, nos. 25–26, p. 5643.

    Article  Google Scholar 

  155. Gogonin, I.I., Thermophys. Aeromech., 2010, vol. 17, no. 2, p. 261.

    Article  Google Scholar 

  156. He, H., Yamada, M., Hidaka, S., Kohno, M., Takahashi, K., and Takata, Y., Proc. 13th Int. Conf. on Heat Transfer, Fluid Mechanics and Thermodynamics, 2017, p. 365.

  157. Suroto, B.J., Kohno, M., and Takata, Y., AIP Conf. Proc., 2018, vol. 1927, no. 1, 030047.

    Article  Google Scholar 

  158. Surtaev, A.S., Serdyukov, V.S., and Safonov, A.I., Interfacial Phenom. Heat Transfer, 2018, vol. 6, no. 3, p. 269.

    Article  Google Scholar 

  159. Kim, J.S., Girard, A., Jun, S., Lee, J., and You, S.M., Int. J. Heat Mass Transfer, 2018, vol. 118, p. 802.

    Article  Google Scholar 

  160. Wang, Y.Q., Luo, J.L., Heng, Y., Mo, D.C., and Lyu, S.S., Int. J. Heat Mass Transfer, 2018, vol. 119, p. 333.

    Article  Google Scholar 

  161. Moiseev, M.I., Fedoseev, A., Shugaev, M.V., and Surtaev, A.S., Interfacial Phenom. Heat Transfer, 2020, vol. 8, no. 1, p. 81.

    Article  Google Scholar 

  162. Betz, A.R., Xu, J., Qiu, H., and Attinger, D., Appl. Phys. Lett., 2010, vol. 97, no. 14, 141909.

    Article  ADS  Google Scholar 

  163. Betz, A.R., Jenkins, J., Kim, C.-J., and Attinger, D., Int. J. Heat Mass Transfer, 2013, vol. 57, no. 2, p. 733.

    Article  Google Scholar 

  164. Motezakker, A.R., Sadaghiani, A.K., Çelik, S., Larsen, T., Villanueva, L.G., and Koşar, A., Int. J. Heat Mass Transfer, 2019, vol. 135, p. 164.

    Article  Google Scholar 

  165. Može, M., Zupančič, M., and Golobič, I., Int. J. Heat Mass Transfer, 2020, vol. 161, 120265.

    Article  Google Scholar 

  166. Yamada, M., Shen, B., Imamura, T., Hidaka, S., Kohno, M., Takahashi, K., and Takata, Y., Int. J. Heat Mass Transfer, 2017, vol. 115, p. 753.

    Article  Google Scholar 

  167. Kwark, S.M., Amaya, M., and You, S.M., Proc. 27th IEEE SEMI-THERM Symposium, 2011, p. 146.

  168. Arya, M., Khandeka, S., Pratap, D., and Ramakrishna, S.A., Heat Mass Transfer, 2016, vol. 52, p. 1725.

    Article  ADS  Google Scholar 

Download references

Funding

The study was financially supported by the Russian Foundation for Basic Research (project no. 19-18-50 264), studies of the effect of surface wettability on boiling heat transfer were carried out under state contract with IT SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Volodin.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volodin, O.A., Pecherkin, N.I. & Pavlenko, A.N. Heat Transfer Enhancement at Boiling and Evaporation of Liquids on Modified SurfacesA Review. High Temp 59, 405–432 (2021). https://doi.org/10.1134/S0018151X21020140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21020140

Navigation