Skip to main content
Log in

Model of the Dynamics of Disperse Fractions in Counter Flows of a Metal Powder and Polymer in the Formation of a Composite Material

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

A numerical model and description of the process of the coagulation of metal particles and polymer droplets in counter flows are presented. The used model of a two-fraction gas suspension consists of metal particles and liquid polymer droplets with air as a carrier medium. A system of equations of motion of a viscous compressible heat-conducting gas is used to describe the motion of the carrier medium. It takes into account the exchange of momentum and energy with fractions of the dispersed phase, each of which is described by a system of gas-dynamic equations that take into account the interphase exchange of momentum and energy with the carrier medium. The system of equations for a two-fraction gas suspension is represented in generalized curvilinear coordinates and is solved with an explicit predictor–corrector method with a spatial operator split into directions and a nonlinear correction scheme at each time step. The temporal and spatial characteristics of the process of the coagulation of metal particles and polymer droplets of a given initial radius are considered with respect to the size of the metal-powder particles. The numerical model can be used to describe the technology for the production of a metal-polymer composite material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kulik, A.Ya., Borisov, Yu.S., Mnukhin, A.S., and Nikitin, M.D., Gazotermicheskoe napylenie kompozitsionnykh poroshkov (Thermal Sputtering of Composite Powders), Leningrad: Mashinostroenie,1985.

  2. Panshin, Yu.A., Malkevich, S.G., and Dunaevskaya, I.S., Ftoroplasty (Fluoroplastics), Leningrad: Khimiya, 1978.

    Google Scholar 

  3. Bondaletova, L.I. and Bondaletov, V.G., Polimernye kompozitsionnye materialy. Uchebnoe posobie (Polymer Composite Materials: Textbook), Tomsk: Tomsk. Politekh. Univ., 2013.

  4. Bogomolova, O.Yu. and Danilaev, M.P., Nauchno-Tekh. Vestn. Povolzh’ya, 2016, no. 3, p. 25.

  5. Vysokovol’tnye elektrotekhnologii. Uchebnoe posobie po kursu Osnovy elektrotekhnologii (High-Voltage Electrical Technologies. Basics of Electrical Technology: Textbook), Vereshchagin, I.P, Ed., Moscow: Mosk. Energ. Inst., 1999.

  6. Varaksin, A.Yu., High Temp., 2019, vol. 57, no. 4, p. 555.

    Article  Google Scholar 

  7. Zaichik, L.I. and Alipchenkov, V.M., Statisticheskie modeli dvizheniya chastits v turbulentnoi zhidkosti (Statistical Models of Particle Motion in a Turbulent Fluid), Moscow: Fizmatlit, 2007.

  8. Babukha, G.L. and Shraiber, A.A., Vzaimodeistvie chastits polidispersnogo materiala v dvukhfaznykh potokakh (Interaction of Particles of a Polydisperse Material in Two-Phase Flows), Kiev: Naukova Dumka, 1972.

  9. Tukmakov, A.L., J. Appl. Mech. Tech. Phys., 2015, vol. 56, no. 4, p. 636.

    Article  ADS  MathSciNet  Google Scholar 

  10. Tukmakov, A.L., J. Eng. Phys. Thermophys., 2014, vol. 87, no. 1, p. 38.

    Article  Google Scholar 

  11. Tukmakov, A.L., J. Eng. Phys. Thermophys., 2015, vol. 88, no. 1, p. 9.

    Article  Google Scholar 

  12. Kutushev, A.G., Matematicheskoe modelirovanie volnovykh protsessov v aerodispersnykh i poroshkoobraznykh sredakh (Mathematical Simulation of Wave Processes in Aerodispersed and Powdery Media), St. Petersburg: Nedra, 2003.

  13. Steger, J.L., AIAA J., 1978, vol. 16, no. 7, p. 679.

    Article  ADS  Google Scholar 

  14. Fletcher, C.A.J., Computational Techniques for Fluid Dynamics, 2 vols., Berlin: Springer, 1988.

    Book  Google Scholar 

  15. Kovenya, V.M., Tarnavskii, G.A., and Chernyi, S.G., Primenenie metoda rasshchepleniya v zadachah aerodinamiki (Application of the Splitting Method in Aerodynamic Problems), Novosibirsk: Nauka, 1990.

  16. Muzafarov, I.F. and Utyuzhnikov, S.V., Mat. Model., 1993, vol. 5, no. 3, p. 74.

    MathSciNet  Google Scholar 

  17. Alemasov, V.E., Dregalin, A.F., Tishin, A.P., and Khudyakov, V.A., Termodinamicheskie i teplofizicheskie svoistva produktov sgoraniya. Spravochnik (Thermodynamic and Thermophysical Properties of Combustion Products: Handbook), 5 vols., vol. 1: Metody rascheta (Calculation Methods), Moscow: VINITI, 1971.

  18. Gubaidullin, D.A. and Tukmakov, D.A., Math. Models Comput. Simul., 2014, vol. 7, p. 246.

    Article  Google Scholar 

  19. Tukmakova, N.A., and Tukmakov, A.L., J. Eng. Phys. Thermophys., 2019, vol. 92, no. 6, p. 1466.

    Article  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Ministry of Education and Science of Russia in the framework of the fulfillment of obligations under agreement no. 075-03-2020-051/3 dated 09.06.2020 (topic no. fzsu-2020-0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Tukmakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tukmakov, A.L. Model of the Dynamics of Disperse Fractions in Counter Flows of a Metal Powder and Polymer in the Formation of a Composite Material. High Temp 59, 307–313 (2021). https://doi.org/10.1134/S0018151X21020127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21020127

Navigation