Skip to main content
Log in

Simulation of Stationary Shock Waves in Porous Copper with Smoothed Particle Hydrodynamics

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The parameters of the shock adiabat of a porous material are calculated in the mesoscopic setting with the developed method of a moving window. The porous material is considered a framework of solid material that fills the space between pores, the mechanical properties and shock adiabat of which are often well known. The essence of the method is as follows: uncompressed material flows into the computational box with a constant velocity, while the outflow velocity from the box is chosen based on iterations so as to make the wave front immobile relative to the window, because the stationary mode of shock-wave propagation must be achieved to calculate the shock adiabats. The simulation of shock waves is performed both in the standard setting with an immobile piston (inverse-motion method) and in the system of a moving window. It is demonstrated that the wave profiles obtained with both methods are identical after the stationary mode is achieved. As an example, the shock adiabats of porous copper, which adequately reproduce experimental data for different porosities, are calculated. The proposed mesoscopic method of calculating the response of porous materials to shock compression in a moving window enables direct calculation of desired shock adiabats for porous materials that have not been studied experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Medin, S.A. and Parshikov, A.N., Math. Models Comput. Simul., 2014, vol. 6, no. 1, p. 42.

    Article  Google Scholar 

  2. Mader, C.L. and Kershner, J.D., The three-dimenional hydrodynamic hotspot model, Tech. Rep. Los Alamos National Laboratory, Los Alamos, 1981.

    Google Scholar 

  3. Zhao, F.P., Wu, H., and Luo, S.-N., J. Appl. Phys., 2013, vol. 114, 073501.

    Article  ADS  Google Scholar 

  4. Mi, X., Michael, L., Nikiforakis, N., and Higgins, A.J., J. Appl. Phys., 2019, vol. 125, 245901.

    Article  ADS  Google Scholar 

  5. Lastiwka, M., Basa, M., and Quinlan, N.J., Int. J. Numer. Methods Fluids, 2009, vol. 61, no. 7, p. 709.

    Article  ADS  Google Scholar 

  6. Federico, I., Marrone, S., Colagrossi, A., Aristodemo, F., and Antuono, M., Eur. J. Mech., B, 2012, vol. 34, p. 35.

  7. Sun, P.-N., Colagrossi, A., and Zhang, A., Theor. Appl. Mech. Lett., 2018, vol. 8, no. 2, p. 115.

    Article  Google Scholar 

  8. Alvarado-Rodriguez, C., Klapp, J., Sigalotti, L., Dominguez, J., and Sanchez, E., Comput. Fluids, 2017, vol. 159, p. 177.

    Article  MathSciNet  Google Scholar 

  9. Ferrand, M., Joly, A., Kassiotis, C., Violeau, D., Leroy, A., Morel, F.-X., and Rogers, B.D., Comput. Phys. Commun., 2016, vol. 210, p. 29.

    Article  ADS  Google Scholar 

  10. Ferrand, M., Laurence, D.R., Rogers, B.D., Violeau, D., and Kassiotis, C., Int. J. Numer. Methods Fluids, 2012, vol. 71, no. 4, p. 446.

    Article  Google Scholar 

  11. Hirschler, M., Kunz, P., Huber, M., Hahn, F., and Nieken, U., J. Comput. Phys., 2016, vol. 307, p. 614.

    Article  ADS  MathSciNet  Google Scholar 

  12. Kunz, P., Hirschler, M., Huber, M., and Nieken, U., J. Comput. Phys., 2016, vol. 326, p. 171.

    Article  ADS  MathSciNet  Google Scholar 

  13. Monteleone, A., Monteforte, M., and Napoli, E., Comput. Fluids, 2017, vol. 159, p. 9.

    Article  MathSciNet  Google Scholar 

  14. Zhakhovskii, V.V., Zybin, S.V., Nishihara, K., and Anisimov, S.I., Phys. Rev. Lett., 1999, vol. 83, p. 1175.

    Article  ADS  Google Scholar 

  15. Egorova, M.S., Dyachkov, S.A., Parshikov, A.N., and Zhakhovsky, V.V., Comput. Phys. Commun., 2019, vol. 234, p. 112.

    Article  ADS  Google Scholar 

  16. Parshikov, A.N. and Medin, S.A., J. Comput. Phys., 2002, vol. 180, p. 358.

    Article  ADS  Google Scholar 

  17. Medin, S.A. and Parshikov, A.N., High Temp., 2010, vol. 48, no. 6, p. 926.

    Article  Google Scholar 

  18. Alder, B.J., Fernbach, S., and Rotenberg, M., Fundamental Methods in Hydrodynamics, New York: Acade-mic, 1964.

    MATH  Google Scholar 

  19. Dyachkov, S.A., Parshikov, A.N., and Zhakhovsky, V.V., J. Phys.: Conf. Ser., 2017, vol. 815, 012012.

    Google Scholar 

  20. Takeda, H., Miyama, S.M., and Sekiya, M., Prog. Theor. Phys., 1994, vol. 92, no. 5, p. 939.

    Article  ADS  Google Scholar 

  21. Marsh, S.P., LASL Shock Hugoniot Data, Los Alamos: Los Alamos Natl. Lab., 1980.

    Google Scholar 

  22. Murzov, S.A., Dyachkov, S.A., Egorova, M.S., Parshikov, A.N., and Zhakhovsky, V.V., J. Phys.: Conf. Ser., 2019, vol. 1147, 012041.

    Google Scholar 

  23. Trunin, R.F., Medvedev, A.B., Funtikov, A.I., Podurets, M.A., Simakov, G.V., and Sevast’yanov, A.G., Zh. Eksp. Teor. Fiz., 1989, vol. 95, no. 2, p. 631.

    ADS  Google Scholar 

  24. Wilkinson, S.D., Braithwaite, M., Nikiforakis, N., and Michael, L., J. Appl. Phys., 2017, vol. 122, 225112.

    Article  ADS  Google Scholar 

  25. Zel’dovich, Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh gidrodinamicheskikh yavlenii. Prakticheskoe posobie (Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena: Practical Guide), Moscow Fizmatlit, 2008.

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-19-00697).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Murzov.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murzov, S.A., Parshikov, A.N., D’yachkov, S.A. et al. Simulation of Stationary Shock Waves in Porous Copper with Smoothed Particle Hydrodynamics. High Temp 59, 230–239 (2021). https://doi.org/10.1134/S0018151X21020097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X21020097

Navigation